Advertisement

General Relativity and Gravitation

, Volume 45, Issue 1, pp 69–78 | Cite as

Dirac field in topologically massive gravity

  • Özcan Sert
  • Muzaffer Adak
Research Article

Abstract

We consider a Dirac field coupled minimally to the Mielke–Baekler model of gravity and investigate cosmological solutions in three dimensions. We arrive at a family of solutions which exists even in the limit of vanishing cosmological constant.

Keywords

Extended gravity Cosmology Dirac equation 

References

  1. 1.
    Deser, S., Jackiw, R., Templeton, S.: Ann. Phys. (NY) 140, 372 (1982)MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    Dereli, T., Sarıoğlu, Ö.: Phys. Rev. D 64, 027501 (2001)MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Nazaroğlu, C., Nutku, Y., Tekin, B.: Phys. Rev. D 83, 124039 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    Banados, M., Teitelboim, C., Zanelli, J.: Phys. Rev. Lett. 69, 1849 (1992)MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 5.
    Mielke, E.W., Baekler, P.: Phys. Lett. A 156, 399 (1991)MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Garcia, A.A., Hehl, F.W., Heinicke, C., Macias, A.: Phys. Rev. D 67, 124016 (2003)MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Blagojevic, M., Vasilic, M.: Phys. Rev. D 68, 104023 (2003)MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Mielke, E.W., Maggiolo, A.R.: Phys. Rev. D 68, 104026 (2003)MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Obukhov, Y.N.: Phys. Rev. D 68, 124015 (2003)MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Blagojevic, M., Cvetkovic, B.: Phys. Rev. D 80, 024043 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    Hehl, F.W., Datta, B.K.: J. Math. Phys. 12, 1334 (1971)MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Trautman, A.: Bull. Acad. Polon. Scie. 20, 185, 503, 895 (1972).Google Scholar
  13. 13.
    Hortacsu, M., Özçelik, H.T., Özdemir, N.: \(2+1\) dimensional solution of Einstein Cartan equations. arXiv:0807.4413Google Scholar
  14. 14.
    Dereli, T., Özdemir, N., Sert, Ö.: Einstein-Cartan-Dirac theory in (1+2)-dimensions. arXiv:1002.0958.Google Scholar
  15. 15.
    Pronin, P. I., Sardanashvily, G.: Gravity, Particles and Space-time, p. 217. World Scientific, Singapore (1996)Google Scholar
  16. 16.
    Saha, B.: Phys. Rev. D 74, 124030 (2006)MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    Watanabe, T.: Dirac-field model of inflation in Einstein-Cartan theory, arXiv:0902.1392.Google Scholar
  18. 18.
    Hearn, A.C.: REDUCE user’s manual version 3.8 (2004). http://www.reduce-algebra.com/docs/reduce.pdf
  19. 19.
    Schrüfer, E.: EXCALC: A system for doing calculations in the calculus of modern differential geometry (2004). http://www.reduce-algebra.com/docs/excalc.pdf
  20. 20.
    Goenner, H., Müller-Hoissen, F.: Class. Quantum Gravit. 1, 651 (1984)ADSCrossRefGoogle Scholar
  21. 21.
    Banerjee, R., Gangopadhyay, S., Mukherjee, P., Roy, D.: JHEP 1002, 075 (2010)MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    Santamaria, R.C., Edelstein, J.D., Garbarz, A., Giribet, G.E.: Phys. Rev. D 83, 124032 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    Seitz, M.: Class. Quant. Grav. 2, 919 (1985)MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    Dimakis, A., Muller-Hoissen, F.: J. Math. Phys. 26, 1040 (1985)MathSciNetADSzbMATHCrossRefGoogle Scholar
  25. 25.
    Baekler, P., Seitz, M., Winkelmann, V.: Class. Quantum Gravit. 5, 479 (1988)MathSciNetADSzbMATHCrossRefGoogle Scholar
  26. 26.
    Dereli, T., Tucker, R.W.: Phys. Lett. A 82, 229 (1981)MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Physics, Faculty of Arts and SciencesPamukkale UniversityDenizliTurkey

Personalised recommendations