Advertisement

General Relativity and Gravitation

, Volume 45, Issue 1, pp 27–39 | Cite as

Einstein–Rosen solutions from Kaluza–Klein theory

  • L. A. López
  • N. Bretón
  • B. V. Ramírez
Research Article

Abstract

From a time-dependent boost-rotational symmetric vacuum solution of the Einstein Equations in five dimensions, through the Kaluza–Klein reduction the corresponding Einstein–Maxwell-dilaton solutions are obtained. The four dimensional counterpart turns out to be generalized Einstein–Rosen spacetimes representing unpolarized gravitational waves traveling in an inhomogeneous cosmology. Restricting the parameters we are able to obtain different 4D time-dependent solutions equipped with scalar and electromagnetic fields.

Keywords

Exact solutions Higher dimensions Kaluza–Klein theory  Black holes 

Notes

Acknowledgments

L. A. López and B. V. Ramírez acknowledge financial support from the PROMEP-Mexico project.

References

  1. 1.
    Bretón, N., Feinstein, A., López, L.A.: \(5D\) gravitational waves from complexified black rings. JHEP02 101 (2010)Google Scholar
  2. 2.
    Bi\(\check{c}\)ák, J., Schmidt, B.G.: Asymptotically flat radiative space-times with boost-rotation symmetry: the general structure. Phys. Rev. D 40, 1827 (1989)Google Scholar
  3. 3.
    Halilsoy, E., Halilsoy, M., Unver, O.: Colliding wave solutions from five-dimensional black holes and black p-branes. J. Math. Phys. 47, 012502 (2006)MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Myers, R.C., Perry, M.J.: Black holes in higher dimensional space-time. Ann. Phys. 172, 304 (1986)MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    Carmeli, M., Charach, Ch.: The Einstein-Rosen gravitational waves and cosmology. Found. Phys. 14, 963 (1984)MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Charach, Ch., Malin, S.: Cosmological model with gravitational, electromagnetic, and scalar waves. Phys. Rev. D 21, 3284 (1980)MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Overduin, J.M., Wesson, P.S.: \(5D\) Kaluza-Klein gravity. Phys. Rep. 203, 303 (1997)MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Bi\(\check{c}\)ák, J., Pravda, V.: Spinning C metric: radiative spacetime with accelerating, rotating black holes. Phys. Rev. D 60, 044004 (1999)Google Scholar
  9. 9.
    Pravdová, A., Pravda, V.: Boost-rotation symmetric vacuum space-times with spinning sources. J. Math. Phys. 43, 1536 (2002)Google Scholar
  10. 10.
    Stephani, H., Kramer, D., MaCallum, M., Hoenselaers, C., Herlt, E.: Exact Solutions to Einsteins Field Equations, 2nd edn. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  11. 11.
    Goncalves, S.M.C.V.: Unpolarized radiative cylindrical spacetimes: trapped surfaces and quasilocal energy. Class. Quantum Gravity 20, 37 (2003)ADSMATHCrossRefGoogle Scholar
  12. 12.
    Bi\(\check{c}\)ák, J., Schmidt, B.G.: Isometries compatible with gravitational radiation. J. Math. Phys. 25, 600 (1984)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Área Académica de Matemáticas y FísicaUAEHPachucaMexico
  2. 2.Dpto de FísicaCentro de Investigación y de Estudios Avanzados del I.P.NApdoMexico

Personalised recommendations