General Relativity and Gravitation

, Volume 44, Issue 12, pp 3103–3109 | Cite as

Linking covariant and canonical general relativity via local observers

Research Article

Abstract

Hamiltonian gravity, relying on arbitrary choices of ‘space,’ can obscure spacetime symmetries. We present an alternative, manifestly spacetime covariant formulation that nonetheless distinguishes between ‘spatial’ and ‘temporal’ variables. The key is viewing dynamical fields from the perspective of a field of observers—a unit timelike vector field that also transforms under local Lorentz transformations. On one hand, all fields are spacetime fields, covariant under spacetime symmeties. On the other, when the observer field is normal to a spatial foliation, the fields automatically fall into Hamiltonian form, recovering the Ashtekar formulation. We argue this provides a bridge between Ashtekar variables and covariant phase space methods. We also outline a framework where the ‘space of observers’ is fundamental, and spacetime geometry itself may be observer-dependent.

Keywords

Lorentz covariance Lorentz symmetry breaking Covariant real Ashtekar variables Observer space Relative locality 

References

  1. 1.
    Arnowitt, R., Deser, S., Misner, C.W.: The dynamics of general relativity. In: Witten, L. (ed.) Gravitation: An Introduction to Current Research. Wiley, New York (1962)Google Scholar
  2. 2.
    Geroch, R.: Domain of dependence. J. Math. Phys. 11, 437–449 (1970)MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    Bernal, A.N., Sánchez, M.: On smooth cauchy hypersurfaces and Geroch’s splitting theorem. Commun. Math. Phys. 243, 461–470 (2003)Google Scholar
  4. 4.
    Gielen, S., Wise, D.K.: Spontaneously broken Lorentz symmetry for Hamiltonian gravity. Phys. Rev. D 85, 104013 (2012)Google Scholar
  5. 5.
    Ashtekar, A.: New variables for classical and quantum gravity. Phys. Rev. Lett. 57, 2244 (1986)MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Barbero G., J.F.: Real Ashtekar variables for Lorentzian signature space times. Phys. Rev. D 51, 5507–5510(1995). arXiv:gr-qc/9410014Google Scholar
  7. 7.
    Wise, D.K.: The geometric role of symmetry breaking in gravity. J. Phys. Conf. Ser. 360, 012017 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    Crnković, C., Witten, E.: Covariant description of canonical formalism in geometric theories. In: Hawking, S.W., Israel, W. (eds.) Three Hundred Years of Gravitation. Cambridge University Press, Cambridge (1987)Google Scholar
  9. 9.
    Gotay, M.J., Isenberg, J., Marsden, J.E., Montgomery, R.: Momentum maps and classical relativistic fields. Part I: Covariant field theory. arXiv:physics/9801019Google Scholar
  10. 10.
    Gielen, S., Wise, D.K.: Lifting general relativity to observer space, in preparationGoogle Scholar
  11. 11.
    Ambjorn, J., Jurkiewicz, J., Loll, R.: Reconstructing the universe. Phys. Rev. D 72, 064014 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    Barbour, J.: Shape dynamics. An introduction. In: Finster, F., et al. (eds.) Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework, Birkhaeuser, Basel (2012)Google Scholar
  13. 13.
    Gomes, H., Gryb, S., Koslowski, T.: Einstein gravity as a 3D conformally invariant theory. Class. Quantum Grav. 28, 045005 (2011)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Hořava, P.: Quantum gravity at a Lifshitz point. Phys. Rev. D 79, 084008 (2009)Google Scholar
  15. 15.
    Amelino-Camelia, G., Freidel, L., Kowalski-Glikman, J., Smolin, L.: Relative locality: a deepening of the relativity principle, Second Prize in the 2011 Essay Competition of the Gravity Research Foundation. arXiv:1106.0313Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Perimeter Institute for Theoretical PhysicsWaterlooCanada
  2. 2.Institute for Quantum GravityUniversität Erlangen-Nürnberg ErlangenGermany

Personalised recommendations