General Relativity and Gravitation

, Volume 44, Issue 11, pp 2825–2856 | Cite as

On the geometrization of matter by exotic smoothness

  • Torsten Asselmeyer-Maluga
  • Helge Rosé
Research Article


In this paper we discuss the question how matter may emerge from space. For that purpose we consider the smoothness structure of spacetime as underlying structure for a geometrical model of matter. For a large class of compact 4-manifolds, the elliptic surfaces, one is able to apply the knot surgery of Fintushel and Stern to change the smoothness structure. The influence of this surgery to the Einstein–Hilbert action is discussed. Using the Weierstrass representation, we are able to show that the knotted torus used in knot surgery is represented by a spinor fulfilling the Dirac equation and leading to a Dirac term in the Einstein–Hilbert action. For sufficient complicated links and knots, there are “connecting tubes” (graph manifolds, torus bundles) which introduce an action term of a gauge field. Both terms are genuinely geometrical and characterized by the mean curvature of the components. We also discuss the gauge group of the theory to be U(1) × SU(2) × SU(3).


Fintushel–Stern knot surgery K3 surface Spinor and gauge field by exotic smoothness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akbulut S.: Lectures on Seiberg-Witten invariants. Turkish J. Math. 20, 95–119 (1996)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Akbulut S.: A fake cusp and a fishtail. Turkish J. Math. 23, 19–31 (1999)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Ashtekar A., Engle J., Sloan D.: Asymptotics and Hamiltonians in a first order formalism. Class. Quantum Grav. 25, 095020 (2008) arXiv:0802.2527CrossRefMathSciNetADSGoogle Scholar
  4. 4.
    Ashtekar A., Sloan D.: Action and Hamiltonians in higher dimensional general relativity: first order framework. Class. Quantum Grav. 25, 225025 (2008) arXiv:0808.2069CrossRefMathSciNetADSGoogle Scholar
  5. 5.
    Asselmeyer T.: Generation of source terms in general relativity by differential structures. Class. Quantum Grav. 14, 749–758 (1996)CrossRefMathSciNetADSGoogle Scholar
  6. 6.
    Asselmeyer-Maluga T.: Exotic smoothness and quantum gravity. Class. Quantum Grav. 27, 165002 (2010) arXiv:1003.5506.CrossRefMathSciNetADSGoogle Scholar
  7. 7.
    Bernal A.N., Saánchez M.: Smoothness of time functions and the metric splitting of globally hyperbolic space times. Commun. Math. Phys. 257, 43–50 (2005) arXiv:gr-qc/0401112zbMATHCrossRefMathSciNetADSGoogle Scholar
  8. 8.
    Bernal A.N., Saánchez M.: Globally hyperbolic spacetimes can be defined as “causal” instead of “strongly causal”. Class. Quantum Grav. 24, 745–750 (2007) arXiv:gr-qc/0611138zbMATHCrossRefMathSciNetADSGoogle Scholar
  9. 9.
    Bernal A.N., Sánchez M.: On smooth Cauchy hypersurfaces and Geroch’s splitting theorem. Commun. Math. Phys. 243, 461–470 (2003) arXiv:gr-qc/0306108zbMATHCrossRefADSGoogle Scholar
  10. 10.
    Bernal A.N., Sánchez M.: Further results on the smoothability of Cauchy hypersurfaces and Cauchy time functions. Lett. Math. Phys. 77, 183–197 (2006) gr-qc/0512095zbMATHCrossRefMathSciNetADSGoogle Scholar
  11. 11.
    Besse A.L.: Einstein Manifolds, Ergebnisse der Mathematik und Ihrer Grenzgebiete, vol. 10. Springer, Berlin (1987)Google Scholar
  12. 12.
    Bilson-Thompson, S.O.: A Topological Model of Composite Preons. (2005). arXiv:hep-ph/0503213v2Google Scholar
  13. 13.
    Bilson-Thompson S.O., Markopoulou F., Smolin L.: Quantum gravity and the standard model. Class. Quantum Grav. 24, 3975–3994 (2007) arXiv:hep-th/0603022v2zbMATHCrossRefMathSciNetADSGoogle Scholar
  14. 14.
    Brans C.H.: Exotic smoothness and physics. J. Math. Phys. 35, 5494–5506 (1994)zbMATHCrossRefMathSciNetADSGoogle Scholar
  15. 15.
    Brans C.H.: Localized exotic smoothness. Class. Quantum Grav. 11, 1785–1792 (1994)zbMATHCrossRefMathSciNetADSGoogle Scholar
  16. 16.
    Brans C.H., Randall D.: Exotic differentiable structures and general relativity. Gen. Relativ. Gravit. 25, 205 (1993)zbMATHCrossRefMathSciNetADSGoogle Scholar
  17. 17.
    Budney R.: JSJ-decompositions of knot and link complements in the 3-sphere. L’enseignement Math. 52, 319–359 (2006) arXiv:math/0506523zbMATHMathSciNetGoogle Scholar
  18. 18.
    Calegari, D.: Foliations and the Geometry of 3-Manifolds, Oxford Mathematical Monographs. Oxford University Press, Oxford (2007)Google Scholar
  19. 19.
    Donaldson S.: Polynomial invariants for smooth four manifolds. Topology 29, 257–315 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Donaldson S., Kronheimer P.: The Geometry of Four-Manifolds. Oxford University Press, Oxford (1990)zbMATHGoogle Scholar
  21. 21.
    Dowker F., Surya S.: Topology change and causal continuity. Phys. Rev. D 58, 124019 (1998) arXiv:gr-qc/9711070CrossRefMathSciNetADSGoogle Scholar
  22. 22.
    Ellis G.F.R., Schmidt B.G.: Singular space-times. Gen. Relativ. Gravit. 8, 915–953 (1977) Review ArticlezbMATHCrossRefMathSciNetADSGoogle Scholar
  23. 23.
    Finkelstein R.J.: Knots and Preons. Int. J. Mod. Phys. A 24, 2307–2316 (2009) arXiv:0806.3105 [hep-th]zbMATHCrossRefMathSciNetADSGoogle Scholar
  24. 24.
    Fintushel R., Stern R.: Knots, links, and 4-manifolds. Inv. Math. 134, 363–400 (1998) (dg-ga/9612014)zbMATHCrossRefMathSciNetADSGoogle Scholar
  25. 25.
    Fintushel R., Stern R.J.: Instanton homology of Seifert fibred homology three spheres. Proc. Lond. Math. Soc. 61, 109–137 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Fintushel R., Stern R.J.: Nondiffeomorphic symplectic 4-manifolds with the same Seiberg–Witten invariants. Geom. Topol. Monogr. 2, 103–111 (1999) arXiv:math/9811019CrossRefMathSciNetGoogle Scholar
  27. 27.
    Fintushel, R., Stern, R.J.: Families of Simply Connected 4-Manifolds with the Same Seiberg–Witten Invariants. (2002) aXiv:math/0210206Google Scholar
  28. 28.
    Floer A.: An instanton invariant for 3-manifolds. Commun. Math. Phys. 118, 215–240 (1988)zbMATHCrossRefMathSciNetADSGoogle Scholar
  29. 29.
    Freedman M.H.: The topology of four-dimensional manifolds. J. Differ. Geom. 17, 357–454 (1982)zbMATHGoogle Scholar
  30. 30.
    Friedrich T.: On the spinor representation of surfaces in euclidean 3-space. J. Geom. Phys. 28, 143–157 (1998) arXiv:dg-ga/9712021v1zbMATHCrossRefMathSciNetADSGoogle Scholar
  31. 31.
    Gibbons G.W., Hawking S.W.: Action integrals and partition functions in quantum gravity. Phys. Rev. D 15, 2752–2756 (1977)CrossRefMathSciNetADSGoogle Scholar
  32. 32.
    Giulini D.: Properties of 3-manifolds for relativists. Int. J. Theor. Phys. 33, 913–930 (1994) arXiv:gr-qc/9308008zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Giulini, D.: Matter from Space. Based on a Talk Delivered at the Conference “Beyond Einstein: Historical Perspectives on Geometry, Gravitation, and Cosmology in the Twentieth Century”, September 2008 at the University of Mainz in Germany. To appear in the Einstein-Studies Series, Birkhaeuser, Boston (2009). arXiv:0910.2574Google Scholar
  34. 34.
    Giveon A., Kutasov D.: Brane dynamics and gauge theory. Rev. Mod. Phys. 71, 983–1084 (1999) arXiv:hep-th/9802067zbMATHCrossRefMathSciNetADSGoogle Scholar
  35. 35.
    Gompf R.: An infinite set of exotic \({{\mathbb{R}}^4}\)’s. J. Differ. Geom. 21, 283–300 (1985)zbMATHMathSciNetGoogle Scholar
  36. 36.
    Gompf R.: Sums of elliptic surfaces. J. Differ. Geom. 34, 93–114 (1991)zbMATHMathSciNetGoogle Scholar
  37. 37.
    Gompf R.E., Stipsicz A.I.: 4-Manifolds and Kirby Calculus. American Mathematical Society, Providence (1999)zbMATHGoogle Scholar
  38. 38.
    Hatcher, A., McCullough, D.: Finiteness of classifying spaces of relative diffeomorphism groups of 3-manifolds. Geom. Top. 1, 91–109 (1997). Scholar
  39. 39.
    Hawking S.W., Ellis G.F.R.: The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge (1994)Google Scholar
  40. 40.
    Kalliongis J., McCullough D.: Isotopies of 3-manifolds. Topol. Appl. 71, 227–263 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Kervaire M.A., Milnor J.: Groups of homotopy spheres: I. Ann. Math. 77, 504–537 (1963)zbMATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Kirby, R., Siebenmann, L.C.: Foundational Essays on Topological Manifolds, Smoothings, and Triangulations. Annals of Mathematics Studies. Princeton University Press, Princeton (1977)Google Scholar
  43. 43.
    Kuiper N.H., Meeks W.H. III: The total curvature of a knotted torus. J. Differ. Geom. 26, 371–384 (1987)zbMATHMathSciNetGoogle Scholar
  44. 44.
    Kusner, R., Schmitt, N.: The Spinor Rrepresentation of Surfaces in Space (1996). arXiv:dg-ga/9610005v1Google Scholar
  45. 45.
    Langevin R., Rosenberg H.: On curvature integrals and knots. Topology 15, 405–416 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    LeBrun C.: Four-manifolds without einstein metrics. Math. Res. Lett. 3, 133–147 (1996)zbMATHMathSciNetGoogle Scholar
  47. 47.
    LeBrun C.: Weyl curvature, Einstein metrics, and Seiberg-Witten theory. Math. Res. Lett. 5, 423–438 (1998) arXiv:math/9803093zbMATHMathSciNetGoogle Scholar
  48. 48.
    Milnor J.: A unique decomposition theorem for 3-manifolds. Am. J. Math. 84, 1–7 (1962)zbMATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    Milnor J.: Lectures on the h-Cobordism Theorem. Princeton University Press, Princeton (1965)zbMATHGoogle Scholar
  50. 50.
    Misner C., Thorne K., Wheeler J.: Gravitation. Freeman, San Francisco (1973)Google Scholar
  51. 51.
    Mostow G.D.: Quasi-conformal mappings in n-space and the rigidity of hyperbolic space forms. Publ. Math. IHÉS 34, 53–104 (1968)zbMATHMathSciNetGoogle Scholar
  52. 52.
    Munkres J.: Obstructions to the smoothing of pieceswise-differential homeomeomorphisms. Ann. Math. 72, 554–621 (1960)CrossRefMathSciNetGoogle Scholar
  53. 53.
    Perelman, G.: The Entropy Formula for the Ricci Flow and its Geometric Applications. (2002). arXiv:math.DG/0211159Google Scholar
  54. 54.
    Perelman, G.: Finite Extinction Time for the Solutions to the Ricci Flow on Certain Three-Manifods. (2003). arXiv:math.DG/0307245Google Scholar
  55. 55.
    Perelman, G.: Ricci Flow with Surgery on Three-Manifolds (2003). arXiv:math.DG/0303109Google Scholar
  56. 56.
    Quinn F.: Ends of Maps III: dimensions 4 and 5. J. Differ. Geom. 17, 503–521 (1982)zbMATHMathSciNetGoogle Scholar
  57. 57.
    Rolfson D.: Knots and Links. Publish or Prish, Berkeley (1976)Google Scholar
  58. 58.
    Sładkowski J.: Gravity on exotic \({{\mathbb R}^{4}}\) with few symmetries. Int. J. Mod. Phys. D 10, 311–313 (2001)zbMATHCrossRefADSGoogle Scholar
  59. 59.
    Taubes C.H.: Gauge theory on asymptotically periodic 4-manifolds. J. Differ. Geom. 25, 363–430 (1987)zbMATHMathSciNetGoogle Scholar
  60. 60.
    Thurston W.: Three-Dimensional Geometry and Topology. 1st edn. Princeton University Press, Princeton (1997)zbMATHGoogle Scholar
  61. 61.
    Witten, E.: 2+1 Dimensional gravity as an exactly soluble system. Nucl. Phys. B 311, 46–78 (1988/89)Google Scholar
  62. 62.
    Witten E.: Topology-changing amplitudes in 2 + 1 dimensional gravity. Nucl. Phys. B 323, 113–140 (1989)CrossRefMathSciNetADSGoogle Scholar
  63. 63.
    Witten E.: Quantization of Chern-Simons gauge theory with complex gauge group. Commun. Math. Phys. 137, 29–66 (1991)zbMATHCrossRefMathSciNetADSGoogle Scholar
  64. 64.
    Witten E.: Monopoles and four-manifolds. Math. Res. Lett. 1, 769–796 (1994)zbMATHMathSciNetGoogle Scholar
  65. 65.
    Yasui, K.: Nuclei and Exotic 4-Manifolds. (2011). arXiv:1111.0620Google Scholar
  66. 66.
    York J.W.: Role of conformal three-geometry in the dynamics of gravitation. Phys. Rev. Lett. 28, 1082–1085 (1972)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.German Aerospace Center (DLR)BerlinGermany
  2. 2.Fraunhofer FIRSTBerlinGermany

Personalised recommendations