Advertisement

General Relativity and Gravitation

, Volume 44, Issue 10, pp 2595–2601 | Cite as

Thermodynamical universality of the Lovelock black holes

  • Naresh Dadhich
  • Josep M. PonsEmail author
  • Kartik Prabhu
Research Article

Abstract

The necessary and sufficient condition for the thermodynamical universality of the static spherically symmetric Lovelock black hole is that it is the Nth order pure Lovelock Λ-vacuum solution. By universality we mean the thermodynamical parameters: temperature and entropy always bear the same relation to the horizon radius for d = 2N + 1, 2N + 2 dimensions for all N which is the degree of the Lovelock polynomial. For instance, the entropy always goes in terms of the horizon radius as r h and r h 2 , respectively for the odd and even dimensions. Not only that the universality uniquely identifies the pure Lovelock black hole with Λ, it is the characterizing property of this class of black holes.

Keywords

Lovelock gravities Black holes Universality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lovelock D.: J. Math. Phys. 12, 498 (1971)MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. 2.
    Lovelock D.: J. Math. Phys. 13, 874 (1972)MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    Duff M.J., Nilsson B.E.W., Pope C.N.: Phys. Lett. B 173, 69 (1986)MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Gross D. J., Witten E.: Nucl. Phys. B277, 1 (1986)ADSCrossRefGoogle Scholar
  5. 5.
    Zumino B.: Phys. Rep. 137, 109 (1985)MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Zwiebach B.: Phys. Lett. 156B, 315 (1985)ADSGoogle Scholar
  7. 7.
    Friedan D.: Phys. Rev. Lett. 45, 1057 (1980)MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Jack I., Jones D., Mohammedi N.: Nucl. Phys. 322, 431 (1989)MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Callan C., Friedan D., Martinec E., Perry M.: Nucl. Phys. B262, 593 (1985)MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Dadhich, N.: Universality, gravity, the enigmatic Λ and beyond, arxiv:gr-qc/0405115; Probing universality of gravity, arxiv:gr-qc/0407003; On the Gauss Bonnet Gravity, Mathematical Physics, (Proceedings of the 12th Regional Conference on Mathematical Physics), Islam, M.J., Hussain, F., Qadir, A. (eds.) Riazuddin and Hamid Saleem, World Scientific, 331; (arxiv:hep-th/0509126); On Lovelock vacuum solution, arxiv:1006.0337Google Scholar
  11. 11.
    Dadhich, N.: Pramana 74, 875 (2010); (arxiv:0802.3034)Google Scholar
  12. 12.
    Dadhich, N., Pons, J.M.: Phys. Lett. B705, 139 (2011); (arxiv:1012.1692)Google Scholar
  13. 13.
    Bañados,M., Teitelboim, C., Zanelli, J.: Phys. Rev. Lett. 69, 1849 (1992); (arxiv:hep-th/9204099)Google Scholar
  14. 14.
    Dadhich N., Molina A., Khugaev A.: Phys. Rev D81, 104026 (2010)ADSGoogle Scholar
  15. 15.
    Dadhich, N.: Math. Today 26, 37 (2011); (arxiv:1006.0337)Google Scholar
  16. 16.
    Cai, R.G., Ohta, N.: Phys. Rev. D74, 064001 (2006); (arxiv:hep-th/0604088)Google Scholar
  17. 17.
    Cai, R.G., Cao, L.-M., Hu, Y.P., Kim, S.P.: Phys. Rev. D78, 124012 (2008); (arxiv:0810.2610v3)Google Scholar
  18. 18.
    Kolekar, S., Kothawala, D., Padmanabhan, T.,: Two Aspects of Black Hole Entropy in Lanczos–Lovelock Models of Gravity. arxiv:1111.0973Google Scholar
  19. 19.
    Wheeler J.T.: Nucl. Phys. B268, 737 (1986)ADSCrossRefGoogle Scholar
  20. 20.
    Wheeler J.T.: Nucl. Phys. B273, 732 (1986)ADSCrossRefGoogle Scholar
  21. 21.
    Whitt B.: Phys. Rev. D38, 3000 (1988)MathSciNetADSGoogle Scholar
  22. 22.
    Cai, R.G., Soh, K.S.: Phys. Rev. D59, 044013 (1999); arxiv:gr-qc/9808067Google Scholar
  23. 23.
    Cai, R.G.: Phys. Rev. D65, 084014 (2002); (arxiv:hep-th/0109133 [hep-th])Google Scholar
  24. 24.
    Cai, R.G., Guo, Q.: Phys. Rev. D69, 104025 (2004); arxiv:hep-th/0311020Google Scholar
  25. 25.
    Kofinas, G., Olea R.: JHEP 0711, 069 (2007); arxiv:0708.0782Google Scholar
  26. 26.
    Garraffo, C., Giribet, G.: Mod. Phys. Lett. A23, 1801 (2008); arxiv:0805.3575Google Scholar
  27. 27.
    Camanho, X.O., Edelstein, J.D.: arxiv:1103.3669Google Scholar
  28. 28.
    Dadhich, N.: Pramana 77, 1 (2011); (arxiv:1006.1552) On the Measure of Spacetime and Gravity. arxiv:1105.3396Google Scholar
  29. 29.
    Prabhu, K., Pons, J., Dadhich, N.: On the static Lovelock black holes. Under preparationGoogle Scholar
  30. 30.
    Bañados M., Teitelboim C., Zanelli J.: Phys. Rev. D49, 975 (1994)ADSGoogle Scholar
  31. 31.
    Crisostomo J., Troncoso R., Zanelli J.: Phys. Rev. D62, 084013 (2000)MathSciNetADSGoogle Scholar
  32. 32.
    Jacobson, T., Myers, R.C.: Phys. Rev. Lett. 70, 3684 (1993); (arxiv:hep-th/9305016v1)Google Scholar
  33. 33.
    Cai, R.G.: Phys. Lett. B582, 237 (2004); (arxiv:hep-th/0311240v2)Google Scholar
  34. 34.
    Dadhich, N., Ghosh, S., Jhingan, S.: Phys. Lee. B711, 196 (2012); (arxiv:1202.4575)Google Scholar
  35. 35.
    Strominger, A., Vafa, C.: Phys. Lett. B 379, 99 (1996); (arxiv:hep-th/9601029)Google Scholar
  36. 36.
    Ashtekar, A., Baez, J., Corichi, A., Krasnov, K.: Phys. Rev. Lett. 80, 904 (1998); (arxiv:gr-qc/9710007)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Inter-University Centre for Astronomy and AstrophysicsPuneIndia
  2. 2.DECM and ICC, Facultat de FísicaUniversitat de BarcelonaBarcelona, CataloniaSpain
  3. 3.Department of PhysicsUniversity of ChicagoChicagoUSA

Personalised recommendations