General Relativity and Gravitation

, Volume 44, Issue 10, pp 2449–2476

Complete solutions to the metric of spherically collapsing dust in an expanding spacetime with a cosmological constant

Open Access
Research Article

Abstract

We present elliptic solutions to the background equations describing the Lemaître–Tolman–Bondi metric as well as the homogeneous Friedmann equation, in the presence of dust, curvature and a cosmological constant Λ. For none of the presented solutions any numerical integration has to be performed. All presented solutions are given for expanding and collapsing phases, preserving continuity in time and radius; both radial and angular scale functions are given. Hence, these solutions describe the complete spacetime of a collapsing spherical object in an expanding universe, as well as those of ever expanding objects. In the appendix we present for completeness a solution of the Friedmann equation in the additional presence of radiation, only valid for the Robertson–Walker metric.

Keywords

Spherical collapse Lemaître–Tolman–Bondi Cosmological constant 

References

  1. 1.
    Friedman, A.: Über die krümmung des raumes. Zeitschrift für Physik A Hadrons and Nuclei, 10, 377–386 (1922). ISSN 0939-7922. http://dx.doi.org/10.1007/BF01332580. Reprinted in Gen. Relativ. Gravit. 31, 1985 (1999)Google Scholar
  2. 2.
    Friedmann, A: On the Possibility of a world with constant negative curvature of space. Z. Phys. 21, 326–332 (1924). doi:10.1007/BF01328280. Reprinted in Gen. Relativ. Gravit. 31, 1985 (1999)
  3. 3.
    Lemaître G.: Un Univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extra-galactiques. Annales de la Societe Scietifique de Bruxelles 47, 49–59 (1927)ADSGoogle Scholar
  4. 4.
    Robertson H.P.: Relativistic cosmology. Rev. Modern Phys. 5, 62–90 (1933). doi:10.1103/RevModPhys.5.62 ADSCrossRefGoogle Scholar
  5. 5.
    Walker A.G.: On Riemanntan spaces with spherical symmetry about a line, and the conditions for isotropy in genj relativity. Q. J. Math. 6, 81–93 (1935). doi:10.1093/qmath/os-6.1.81 CrossRefGoogle Scholar
  6. 6.
    Lemaître, G.: L’Univers en expansion. Annales de la Societe Scietifique de Bruxelles, 53, 51 (1933). Reprinted in Gen. Relativ. Gravit. 29, 637 (1997)Google Scholar
  7. 7.
    Tolman, R.C.: Effect of inhomogeneity on cosmological models. Proc. Nat. Acad. Sci., 20, 169–176 (1934). Reprinted in Gen. Relativ. Gravit. 29, 931 (1997)Google Scholar
  8. 8.
    Bondi, H.: Spherically symmetrical models in general relativity. Mon. Not. R. Astron. Soc. 107, 410–425 (1947). Reprinted in Gen. Relativ. Gravit. 31, 1777 (1999)Google Scholar
  9. 9.
    Van Acoleyen K.: LTB solutions in Newtonian gauge: from strong to weak fields. JCAP 0810, 028 (2008). doi:10.1088/1475-7516/2008/10/028 MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Gunn J.E., Richard Gott J. III: On the infall of matter into cluster of galaxies and some effects on their evolution. Astrophys. J. 176, 1–19 (1972). doi:10.1086/151605 ADSCrossRefGoogle Scholar
  11. 11.
    Lahav O., Lilje P.B., Primack J.R., Rees M.J.: Dynamical effects of the cosmological constant. Mon. Not. R. Astron. Soc. 251, 128–136 (1991)ADSGoogle Scholar
  12. 12.
    Jhingan S., Joshi P.S., Singh T.P.: The final fate of spherical inhomogeneous dust collapse II: initial data and causal structure of singularity. Class. Quant. Grav. 13, 3057–3068 (1996). doi:10.1088/0264-9381/13/11/019 MathSciNetADSMATHCrossRefGoogle Scholar
  13. 13.
    Wang L.-M., Steinhardt P.J.: Cluster abundance constraints on quintessence models. Astrophys. J. 508, 483–490 (1998). doi:10.1086/306436 ADSCrossRefGoogle Scholar
  14. 14.
    Sheth R.K., Mo H.J., Tormen G.: Ellipsoidal collapse and an improved model for the number and spatial distribution of dark matter haloes. Mon. Not. R. Astron. Soc. 323, 1 (2001). doi:10.1046/j.1365-8711.2001.04006.x ADSCrossRefGoogle Scholar
  15. 15.
    Deshingkar S.S., Chamorro A., Jhingan S., Joshi P.S.: Gravitational collapse and cosmological constant. Phys. Rev. D 63, 124005 (2001). doi:10.1103/PhysRevD.63.124005 ADSCrossRefGoogle Scholar
  16. 16.
    Krasinski A., Hellaby C.: Structure formation in the Lemaitre-Tolman model I. Phys. Rev. D 65, 023501 (2002). doi:10.1103/PhysRevD.65.023501 MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    Krasinski A., Hellaby C.: Formation of a galaxy with a central black hole in the Lemaitre-Tolman model. Phys. Rev. D 69, 043502 (2004). doi:10.1103/PhysRevD.69.043502 MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    Krasinski A., Hellaby C.: More examples of structure formation in the Lemaitre–Tolman model. Phys. Rev. D 69, 023502 (2004). doi:10.1103/PhysRevD.69.023502 MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Mota D.F., van de Bruck C.: On the spherical collapse model in dark energy cosmologies. Astron. Astrophys. 421, 71–81 (2004). doi:10.1051/0004-6361:20041090 ADSMATHCrossRefGoogle Scholar
  20. 20.
    Bartelmann M., Doran M., Wetterich C.: Non-linear structure formation in cosmologies with early dark energy. Astron. Astrophys. 454, 27–36 (2006). doi:10.1051/0004-6361:20053922 ADSMATHCrossRefGoogle Scholar
  21. 21.
    Bolejko K., Hellaby C.: The great attractor and the shapley concentration. Gen. Relativ. Gravit. 40, 1771–1790 (2008). doi:10.1007/s10714-007-0573-5 MathSciNetADSMATHCrossRefGoogle Scholar
  22. 22.
    Firouzjaee J.T., Mansouri R.: Asymptotically FRW black holes. Gen. Relativ. Gravit. 42, 2431–2452 (2010). doi:10.1007/s10714-010-0991-7 MathSciNetADSMATHCrossRefGoogle Scholar
  23. 23.
    Bjaelde, O.E., Wong, Y.Y.Y.: Spherical collapse of dark energy with an arbitrary sound speed. (2010)Google Scholar
  24. 24.
    Firouzjaee, J.T.: The spherical symmetry Black hole collapse in expanding universe. (2011)Google Scholar
  25. 25.
    Sheth R.K., van de Weygaert R.: A hierarchy of voids: Much ado about nothing. Mon. Not. R. Astron. Soc. 350, 517 (2004). doi:10.1111/j.1365-2966.2004.07661.x ADSCrossRefGoogle Scholar
  26. 26.
    Bolejko K., Krasinski A., Hellaby C.: Formation of voids in the Universe within the Lemaitre–Tolman model. Mon. Not. R. Astron. Soc. 362, 213–228 (2005). doi:10.1111/j.1365-2966.2005.09292.x ADSCrossRefGoogle Scholar
  27. 27.
    Martino, M.C., Sheth, R.K.: Density profiles and voids in modified gravity models. (2009)Google Scholar
  28. 28.
    Biswas R., Alizadeh E., Wandelt B.D.: Voids as a precision probe of dark energy. Phys. Rev. D 82, 023002 (2010). doi:10.1103/PhysRevD.82.023002 ADSCrossRefGoogle Scholar
  29. 29.
    Moffat J.W., Tatarski D.C.: Redshift and structure formation in a spatially flat inhomogeneous universe. Phys. Rev. D 45(10), 3512–3522 (1992). doi:10.1103/PhysRevD.45.3512 ADSCrossRefGoogle Scholar
  30. 30.
    Moffat, J.W., Tatarski, D.C.: Cosmological observations in a local void. Astrophys. J. 453, 17 (1995) doi:10.1086/176365
  31. 31.
    Tomita K.: Distances and lensing in cosmological void models. Astrophys. J. 529, 38 (2000). doi:10.1086/308277 ADSCrossRefGoogle Scholar
  32. 32.
    Tomita K.: Analyses of type Ia supernova data in cosmological models with a local void. Prog. Theor. Phys. 106, 929–939 (2001). doi:10.1143/PTP.106.929 ADSCrossRefGoogle Scholar
  33. 33.
    Moffat J.W.: Late-time inhomogeneity and acceleration without dark energy. JCAP 0605, 001 (2006). doi:10.1088/1475-7516/2006/05/001 MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    Mansouri, R.: Structured FRW universe leads to acceleration: a non-perturbative approach (2005)Google Scholar
  35. 35.
    Alnes H., Amarzguioui M., Gron O.: An inhomogeneous alternative to dark energy?. Phys. Rev. D 73, 083519 (2006). doi:10.1103/PhysRevD.73.083519 ADSCrossRefGoogle Scholar
  36. 36.
    Moffat J.W.: Cosmic microwave background, accelerating universe and inhomogeneous cosmology. JCAP 0510, 012 (2005). doi:10.1088/1475-7516/2005/10/012 ADSCrossRefGoogle Scholar
  37. 37.
    Enqvist K.: Mattsson Teppo the effect of inhomogeneous expansion on the supernova observations. JCAP 0702, 019 (2007). doi:10.1088/1475-7516/2007/02/019 ADSCrossRefGoogle Scholar
  38. 38.
    Chung D.J.H., Romano A.E.: Mapping luminosity-redshift relationship to LTB Cosmology. Phys. Rev. D 74, 103507 (2006). doi:10.1103/PhysRevD.74.103507 ADSCrossRefGoogle Scholar
  39. 39.
    Enqvist K.: Lemaitre-Tolman-Bondi model and accelerating expansion. Gen. Relativ. Gravit. 40, 451–466 (2008). doi:10.1007/s10714-007-0553-9 MathSciNetADSMATHCrossRefGoogle Scholar
  40. 40.
    Garcia-Bellido J., Haugboelle T.: Confronting Lemaitre-Tolman-Bondi models with observational cosmology. JCAP 0804, 003 (2008). doi:10.1088/1475-7516/2008/04/003 ADSCrossRefGoogle Scholar
  41. 41.
    Zibin, J.P., Moss, A., Scott, D.: Can we avoid dark energy? Phys. Rev. Lett. 101, 251303 (2008). doi:10.1103/PhysRevLett.101.251303 Google Scholar
  42. 42.
    Romano, A.E.: Can the cosmological constant be mimicked by smooth large-scale inhomogeneities for more than one observable? JCAP 1005, 020 (2010). doi:10.1088/1475-7516/2010/05/020
  43. 43.
    Clifton T., Ferreira P.G., Zuntz J.: What the small angle CMB really tells us about the curvature of the universe. JCAP 0907, 029 (2009). doi:10.1088/1475-7516/2009/07/029 ADSCrossRefGoogle Scholar
  44. 44.
    February S., Larena J., Smith M., Clarkson C.: Rendering dark energy void. Mon. Not. R. Astron. Soc. 405, 2231 (2010)ADSGoogle Scholar
  45. 45.
    Sollerman J. et al.: First-year sloan digital sky survey-II (SDSS-II) supernova results: constraints on non-standard cosmological models. Astrophys. J. 703, 1374–1385 (2009). doi:10.1088/0004-637X/703/2/1374 ADSCrossRefGoogle Scholar
  46. 46.
    Yoo C.-M., Nakao K.i., Sasaki M.: CMB observations in LTB universes: part II: the kSZ effect in an LTB universe. JCAP 1010, 011 (2010). doi:10.1088/1475-7516/2010/10/011 ADSCrossRefGoogle Scholar
  47. 47.
    Clarkson C., Regis M.: The cosmic microwave background in an inhomogeneous universe—why void models of dark energy are only weakly constrained by the CMB. JCAP 1102, 013 (2011). doi:10.1088/1475-7516/2011/02/013 ADSCrossRefGoogle Scholar
  48. 48.
    Marra V., Paakkonen M.: Observational constraints on the LLTB model. JCAP 1012, 021 (2010). doi:10.1088/1475-7516/2010/12/021 ADSCrossRefGoogle Scholar
  49. 49.
    Amendola L., Kainulainen K., Marra V., Quartin M.: Large-scale inhomogeneities may improve the cosmic concordance of supernovae. Phys. Rev. Lett. 105, 121302 (2010). doi:10.1103/PhysRevLett.105.121302 ADSCrossRefGoogle Scholar
  50. 50.
    Biswas T., Notari A., Valkenburg W.: Testing the void against cosmological data: fitting CMB, BAO, SN and H0. JCAP 1011, 030 (2010). doi:10.1088/1475-7516/2010/11/030 ADSCrossRefGoogle Scholar
  51. 51.
    Nadathur S., Sarkar S.: Reconciling the local void with the CMB. Phys. Rev. D 83, 063506 (2011). doi:10.1103/PhysRevD.83.063506 ADSCrossRefGoogle Scholar
  52. 52.
    Alonso D., Garcia-Bellido J., Haugbolle T., Vicente J.: Large scale structure simulations of inhomogeneous LTB void models. Phys. Rev. D 82, 123530 (2010). doi:10.1103/PhysRevD.82.123530 ADSCrossRefGoogle Scholar
  53. 53.
    Sinclair B., Davis T.M., Haugbolle T.: Residual hubble-bubble effects on supernova cosmology. Astrophys. J. 718, 1445–1455 (2010). doi:10.1088/0004-637X/718/2/1445 ADSCrossRefGoogle Scholar
  54. 54.
    Marra, V., Notari, A.: Observational constraints on inhomogeneous cosmological models without dark energy (2011)Google Scholar
  55. 55.
    Marra V., Kolb E.W., Matarrese S., Riotto A.: On cosmological observables in a swiss-cheese universe. Phys. Rev. D 76, 123004 (2007). doi:10.1103/PhysRevD.76.123004 ADSCrossRefGoogle Scholar
  56. 56.
    Biswas T., Notari A.: Swiss-Cheese inhomogeneous cosmology & the dark energy problem. JCAP 0806, 021 (2008). doi:10.1088/1475-7516/2008/06/021 ADSCrossRefGoogle Scholar
  57. 57.
    Valkenburg W.: Swiss Cheese and a Cheesy CMB. JCAP 0906, 010 (2009). doi:10.1088/1475-7516/2009/06/010 ADSCrossRefGoogle Scholar
  58. 58.
    Kessler R. et al.: First-year sloan digital sky survey-II (SDSS-II) supernova results: hubble diagram and cosmological parameters. Astrophys. J. Suppl. 185, 32–84 (2009). doi:10.1088/0067-0049/185/1/32 ADSCrossRefGoogle Scholar
  59. 59.
    Reid B.A. et al.: Baryon acoustic oscillations in the sloan digital sky survey data release 7 galaxy sample. Mon. Not. R. Astron. Soc. 401, 2148–2168 (2010). doi:10.1111/j.1365-2966.2009.15812.x ADSCrossRefGoogle Scholar
  60. 60.
    Komatsu E. et al.: Seven-year wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation. Astrophys. J. Suppl. 192, 18 (2011). doi:10.1088/0067-0049/192/2/18 ADSCrossRefGoogle Scholar
  61. 61.
    Sandage A. et al.: The hubble constant: a summary of the HST program for the luminosity calibration of type Ia supernovae by means of cepheids. Astrophys. J. 653, 843–860 (2006). doi:10.1086/508853 ADSCrossRefGoogle Scholar
  62. 62.
    Romano, A.E., Sasaki, M., Starobinsky, A.A.: Effects of inhomogeneities on apparent cosmological observables: “fake” evolving dark energy (2010)Google Scholar
  63. 63.
    Romano, A.E., Chen, P.: Corrections to the apparent value of the cosmological constant due to local inhomogeneities (2011)Google Scholar
  64. 64.
    Omer G.C.: Spherically symmetric distributions of matter without pressure. Proc. Natl. Acad. Sci. 53, 1–5 (1965). doi:10.1073/pnas.53.1.1 ADSMATHCrossRefGoogle Scholar
  65. 65.
    Ruban, V.A.: Spherically symmetric T-models in the general theory of relativity. Sov. J. Exp. Theor. Phys. 29, 1027 (1969)Google Scholar
  66. 66.
    Barrow J.D., Stein-Schabes J.: Inhomogeneous cosmologies with cosmological constant. Phys. Lett. A103, 315 (1984). doi:10.1016/0375-9601(84)90467-5 MathSciNetADSGoogle Scholar
  67. 67.
    Krasinski, A.: Inhomogeneous cosmological modelsGoogle Scholar
  68. 68.
    Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C., Herlt, E.: Exact solutions of Einstein’s field equations. (2003)Google Scholar
  69. 69.
    Alexander S., Biswas T., Notari A., Vaid D.: Local void vs dark energy: confrontation with WMAP and type Ia supernovae. JCAP 0909, 025 (2009). doi:10.1088/1475-7516/2009/09/025 ADSCrossRefGoogle Scholar
  70. 70.
    Carlson, B.C.: In digital library of mathematical functions. National Institute of Standards and Technology from http://dlmf.nist.gov/, 2010-05-07
  71. 71.
    Carlson B.C.: Numerical computation of real or complex elliptic integrals. Numer. Algor. 10, 13–26 (1995). doi:10.1007/BF02198293 ADSMATHCrossRefGoogle Scholar
  72. 72.
    Bolejko, K., Hellaby, C., Alfedeel, A.H.A.: The metric of the cosmos from luminosity and age data (2011)Google Scholar
  73. 73.
    Carlson, B.C.: Elliptic integrals: symmetry and symbolic integration. Atti dei Convegni Lincei 147, 161–181 (1998) http://www.osti.gov/bridge/product.biblio.jsp?osti_id=348931
  74. 74.
    Carlson, B.C.: Toward symbolic integration of elliptic integrals. J. Symbol. Comput. 28(6), 739–753 (1999). ISSN 0747-7171. doi:10.1006/jsco.1999.0336. http://www.sciencedirect.com/science/article/B6WM7-45FKTYR-1J/2/c4899e983e4f3e2b1103ea95eceacb00 Google Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.Instituut-Lorentz for Theoretical PhysicsUniversiteit LeidenLeidenThe Netherlands
  2. 2.Institut für Theoretische PhysikUniversität HeidelbergHeidelbergGermany

Personalised recommendations