Advertisement

General Relativity and Gravitation

, Volume 44, Issue 9, pp 2283–2298 | Cite as

The universe formation by space reduction cascades with random initial parameters

  • Sergei Rubin
  • Alexey Zinger
Research Article

Abstract

In this paper we discuss the creation of our universe using the idea of extra dimensions. The initial, multidimensional Lagrangian contains only metric tensor. We have found many sets of the numerical values of the Lagrangian parameters corresponding to the observed low-energy physics of our Universe. Different initial parameters can lead to the same values of fundamental constants by the appropriate choice of a dimensional reduction cascade. This result diminishes the significance of the search for the ‘unique’ initial Lagrangian. We also have obtained a large number of low-energy vacua, which is known as ‘landscape’ in the string theory.

Keywords

Reduction cascade Extra dimensions Kaluza-Klein 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barrow J.D., Tipler F.J.: The Anthropic Cosmological Principle. Clarendon Press, Oxford (1986)Google Scholar
  2. 2.
    Rees M.J.: Our Cosmic Habitat. Princeton University Press, Princeton (2002)Google Scholar
  3. 3.
    Bostrom N.: Anthropic Bias: Observation Selection Effects in Science and Philosophy. Routledge, New York (2002)Google Scholar
  4. 4.
    Tegmark, M.: Parallel Universes, “Science and Ultimate Reality: From Quantum to Cosmos”. Cambridge University Press, Cambridge (2003). astro-ph/0302131Google Scholar
  5. 5.
    Aguirre, A., Tegmark, M.: JCAP 0501:003,2005 (2004). hep-th/0409072Google Scholar
  6. 6.
    Kane G.L., Perry M.J., Zytkow A.N.: New Astron. 7, 45 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    Danies P.: Mod. Phys. Lett. A 19, 727 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    Hogan, C.J.: In Universe or Multiverse? In: Carr, B.J. (ed.) Cambridge University Press, Cambridge (2005). E-print archives, astro-ph/0407086Google Scholar
  9. 9.
    Stoeger, W.R., Ellis, G.F.R., Kirchner, U.: E-print archives. astro-ph/0407329Google Scholar
  10. 10.
    Aguirre, A.: In Universe or Multiverse. In: Carr, B. (ed.) Cambridge University Press, Cambridge (2005). E-print archives, astro-ph/0506519Google Scholar
  11. 11.
    Livio M., Rees M.J.: Science 309, 1022 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    Weinstein, S.: Class. Quant. Grav. 23, 4231 (2006). E-print archives, hep-th/0508006Google Scholar
  13. 13.
    Tegmark M. et al.: Phys. Rev. D 73, 023505 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    Lerche W., Lust D., Schellekens A.N.: Nucl. Phys. B 287, 477 (1987)ADSCrossRefGoogle Scholar
  15. 15.
    Rubin, S.G.: in Chaos Solitons Fractals 14, 891 (2002). astro-ph/0207013Google Scholar
  16. 16.
    Rubin, S.G., G & C 9, 243, (2003). E-print archives, hep-ph/0309184Google Scholar
  17. 17.
    Kachru S., Kallosh R., Linde A., Trivedi S.P.: Phys. Rev. D 68, 046005 (2003)MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    Castro, C., Granik, A., El Naschie, M.S.: E-print archives, hep-th/0004152Google Scholar
  19. 19.
    Bleyer, U., Mohazzab, M., Rainer, M.: E-print archives, gr-qc/9508035Google Scholar
  20. 20.
    Bousso R., Polchinski J.: JHEP 0006, 006 (2000)MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    Susskind, L.: arXiv:hep-th/0302219Google Scholar
  22. 22.
    Bronnikov, K.A., Rubin, S.G.: Phys. Rev. D 73, 124019 (2006). E-print archives, gr-qc/0510107Google Scholar
  23. 23.
    Rubin, S.G., Eksp, Zh.: Teor. Fiz. 133(4), 820 (2008) [JETP 106(4), 714 (2008)]; arXiv:0804.4348Google Scholar
  24. 24.
    Linde A., Linde D.: Topological defects as seeds for eternal inflation. Phys. Rev. D 50, 2456–2468 (1994) arXiv:hep-th/9402115MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    Aref’eva I.Ya., Volovich I.V.: Int. J. Geom. Meth. Mod. Phys. 05, 641–651 (2008) arXiv:0710.2696MathSciNetCrossRefGoogle Scholar
  26. 26.
    Kirillov A.A., Savelova E.P., Shamshutdinova G.D.: JETP Lett. 90, 599–603 (2010) arXiv:0909.5254ADSCrossRefGoogle Scholar
  27. 27.
    Hartle J.B., Hawking S.W.: Phys. Rev. D 28, 2960 (1983)MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    Vilenkin A.: Phys. Lett. B 117, 25 (1982)MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    Wiltshire, D.L.: In: Robson, B., Visvanathan, N., Woolcock, W.S. (ed.) Cosmology: the Physics of the Universe, p. 473. World Scientific, Singapore (1996)Google Scholar
  30. 30.
    Starobinsky A.A.: JETP Lett. 86, 157 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    Nojiri S., Odintsov , Sergei D.: Int. J. Geom. Meth. Mod. Phys. 4, 115 (2007) arXiv:hep-th/0601213zbMATHCrossRefGoogle Scholar
  32. 32.
    Sokolowski L.M.: Acta Phys. Polon. B 39, 2879 (2008)MathSciNetADSGoogle Scholar
  33. 33.
    Carroll S.M. et al.: Phys.Rev. D 66, 024036 (2002) arXiv:hep-th/0110149MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    Bronnikov K.A., Konoplich R.V., Rubin S.G.: Class.Quantum Grav. 24, 1261 (2007) arXiv:gr-qc/0610003MathSciNetADSzbMATHCrossRefGoogle Scholar
  35. 35.
    Rubin S.G.: On the origin of gauge symmetries and fundamental constants. JETP 109, 961 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    Carlip, S.: arXiv:gr-qc/0508072Google Scholar
  37. 37.
    Ochiai, H., Sato, K.: arXiv:gr-qc/0007059Google Scholar
  38. 38.
    e Costa, S.S., Fagundes, H.V.: Gen. Relativ. Gravit. 33, 1489–1494 (2001). arXiv:gr-qc/9911110v3Google Scholar
  39. 39.
    Firouzjahi, H., Sarangi, S., Henry Tye, S.-H.: (2004) arXiv:hep-th/0406107Google Scholar
  40. 40.
    van Elst H., Lidsey J.E., Tavakol R.: Class. Quant. Grav. 11, 2483–2498 (1994) arXiv:gr-qc/9404044ADSzbMATHCrossRefGoogle Scholar
  41. 41.
    Maldacena J.M., Nunez C.: Int. J. Mod. Phys. A 16, 822 (2001) [hep-th/0007018]MathSciNetADSzbMATHCrossRefGoogle Scholar
  42. 42.
    Günther U., Moniz P., Zhuk A.: Astrophys. Space Sci. 283, 679 (2003) gr-qc/0209045ADSCrossRefGoogle Scholar
  43. 43.
    Bronnikov, K.A., Melnikov, V.N.: E-print archives, gr-qc/0310112Google Scholar
  44. 44.
    Steinhardt P.J., Wesley D.: Phys. Rev. D 79, 104026 (2009)ADSCrossRefGoogle Scholar
  45. 45.
    Kim Y., Park S.C.: Phys. Rev. D 83, 066009 (2011) arXiv:1010.6021ADSCrossRefGoogle Scholar
  46. 46.
    Kihara H., Nitta M., Sasaki M., Yoo C.-M., Zaballa I.: Dynamical compactification and inflation in Einstein-Yang-Mills theory with higher derivative coupling. Phys. Rev. D 80, 066004 (2009) arXiv:0906.4493ADSCrossRefGoogle Scholar
  47. 47.
    Bronnikov K.A., Rubin S.G., Svadkovsky I.V.: Multidimensional world, inflation and modern acceleration. Phys. Rev. D 81, 084010 (2010) arXiv:0912.4862ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.National Research Nuclear University “MEPhI”MoscowRussia

Personalised recommendations