Advertisement

General Relativity and Gravitation

, Volume 44, Issue 9, pp 2191–2203 | Cite as

Spinor fields and symmetries of the spacetime

  • Jianwei Mei
Research Article

Abstract

We show that in the background of a stationary and axisymmetric black hole, there is a particular spinor field whose “conserved current” interpolates between the null Killing vector on the horizon and the time Killing vector at the spatial infinity. The spinor field only needs to satisfy a very general and simple constraint.

Keywords

Killing vector Black hole solutions Spinor field 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mei, J.: Towards a possible fluid flow underlying the Kerr spacetime. [arXiv:1104.3728 [hep-th]]Google Scholar
  2. 2.
    Mei J.: The entropy for general extremal black holes. JHEP 1004, 005 (2010) [arXiv:1002.1349 [hep-th]]ADSCrossRefGoogle Scholar
  3. 3.
    Arnowitt, R.L., Deser, S., Misner, C.W.: The dynamics of general relativity. gr-qc/0405109Google Scholar
  4. 4.
    Gibbons G.W., Perry M.J., Pope C.N.: The first law of thermodynamics for Kerr-anti-de Sitter black holes. Class. Quant. Gravit. 22, 1503–1526 (2005) [hep-th/0408217]MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 5.
    Gibbons G.W., Perry M.J., Pope C.N.: AdS/CFT Casimir energy for rotating black holes. Phys. Rev. Lett. 95, 231601 (2005) [hep-th/0507034]MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Skenderis K., Skenderis K.: Thermodynamics of asymptotically locally AdS spacetimes. JHEP 0508, 004 (2005) [hep-th/0505190]MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Banados M., Teitelboim C., Zanelli J.: The Black hole in three-dimensional space-time. Phys. Rev. Lett. 69, 1849 (1992) [arXiv:hep-th/9204099]MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. 8.
    Carlip S.: Conformal field theory, (2 + 1)-dimensional gravity, and the BTZ black hole. Class. Quant. Gravit. 22, R85 (2005) [arXiv:gr-qc/0503022]MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 9.
    Cvetič M., Youm D.: Entropy of non-extreme charged rotating black holes in string theory. Phys. Rev. D 54, 2612 (1996) [arXiv:hep-th/9603147]MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Cvetič M., Youm D.: General rotating five dimensional black holes of toroidally compactified heterotic string. Nucl. Phys. B 476, 118 (1996) [arXiv:hep-th/9603100]ADSzbMATHCrossRefGoogle Scholar
  11. 11.
    Chong Z.W., Cvetič M., Lü H., Pope C.N.: Charged rotating black holes in four-dimensional gauged and ungauged supergravities. Nucl. Phys. B 717, 246 (2005) [arXiv:hep-th/0411045]ADSzbMATHCrossRefGoogle Scholar
  12. 12.
    Cvetič M., Lü H., Pope C.N.: Charged rotating black holes in five dimensional U(1)3 gauged N =  2 supergravity. Phys. Rev. D 70, 081502 (2004) [arXiv:hep-th/0407058]MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Mei J., Pope C.N.: New rotating non-extremal black holes in D = 5 maximal gauged supergravity. Phys. Lett. B 658, 64 (2007) [arXiv:0709.0559 [hep-th]]MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Chow D.D.K.: Equal charge black holes and seven dimensional gauged supergravity. Class. Quant. Gravit. 25, 175010 (2008) [arXiv:0711.1975 [hep-th]]ADSCrossRefGoogle Scholar
  15. 15.
    Chow D.D.K.: Charged rotating black holes in six-dimensional gauged supergravity. Class. Quant. Gravit. 27, 065004 (2010) [arXiv:0808.2728 [hep-th]]ADSCrossRefGoogle Scholar
  16. 16.
    Chow, D.D.K.: Two-charge rotating black holes in four-dimensional gauged supergravity. [arXiv:1012.1851 [hep-th]]Google Scholar
  17. 17.
    Chow D.D.K.: Single-charge rotating black holes in four-dimensional gauged supergravity. Class. Quant. Gravit. 28, 032001 (2011) [arXiv:1011.2202 [hep-th]]ADSCrossRefGoogle Scholar
  18. 18.
    Wu S.-Q.: General nonextremal rotating charged ads black holes in five-dimensional U(1)3 gauged supergravity: a simple construction method. Phys. Lett. B 707, 286 (2012) [arXiv:1108.4159 [hep-th]]MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Chen W., Lü H., Pope C.N.: General Kerr-NUT-AdS metrics in all dimensions. Class. Quant. Gravit. 23, 5323 (2006) [arXiv:hep-th/0604125]ADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Max Planck Institute for Gravitational Physics (Albert Einstein Institute)GolmGermany

Personalised recommendations