General Relativity and Gravitation

, Volume 44, Issue 7, pp 1615–1636 | Cite as

Shape dynamics in 2 + 1 dimensions

Open Access
Editor’s Choice (Research Article)


Shape Dynamics is a formulation of General Relativity where refoliation invariance is traded for local spatial conformal invariance. In this paper we explicitly construct Shape Dynamics for a torus universe in 2 + 1 dimensions through a linking gauge theory that ensures dynamical equivalence with General Relativity. The Hamiltonian we obtain is formally a reduced phase space Hamiltonian. The construction of the Shape Dynamics Hamiltonian on higher genus surfaces is not explicitly possible, but we give an explicit expansion of the Shape Dynamics Hamiltonian for large CMC volume. The fact that all local constraints are linear in momenta allows us to quantize these explicitly under a certain assumption on the kinematic Hilbert space, and the quantization problem for Shape Dynamics turns out to be equivalent to reduced phase space quantization. We consider the large CMC-volume asymptotics of conformal transformations of the wave function. We then discuss the similarity of Shape Dynamics on the 2-torus with the explicitly constructible strong gravity Shape Dynamics Hamiltonian in higher dimensions.


Canonical general relativity General relativity in 2 + 1 dimensions Shape dynamics Dirac quantization 


  1. 1.
    Anderson E., Barbour J., Foster B.Z., Kelleher B., Ó Murchadha N.: The physical gravitational degrees of freedom. Class. Quantum Gravity 22(9), 1795–1802 (2005)MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    Banks T., Fischler W., Susskind L.: Quantum cosmology in 2+1 and 3+1 dimensions. Nucl. Phys. B 262(1), 159–186 (1985)ADSCrossRefGoogle Scholar
  3. 3.
    Barbour, J.: Shape dynamics. An introduction. In: Finster, F., Müller, O., Nardmann, M., Tolksdorf, J., Zeidler, E. (eds.) Quantum Field Theory and Gravity, pp. 257–297. Springer, Basel (2012)Google Scholar
  4. 4.
    Barbour, J., Ó Murchadha, N.: Conformal superspace: the configuration space of general relativity. arXiv:1009.3559 (2010)Google Scholar
  5. 5.
    Belinskii V., Khalatnikov I., Lifshitz E.: A general solution of the Einstein equations with a time singularity. Adv. Phys. 31(6), 639–667 (1982)ADSCrossRefGoogle Scholar
  6. 6.
    Belinskii V., Khalatnikov I., Lifshttz E.: Oscillatory approach to a singular point in the relativistic cosmology. Adv. Phys. 19(80), 525–573 (1970)ADSCrossRefGoogle Scholar
  7. 7.
    Carlip S.: Notes on the (2+1)-dimensional Wheeler–DeWitt equation. Class. Quantum Gravity 11(1), 31–39 (1994)MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Carlip S.: Quantum Gravity in 2+1 Dimensions. Cambridge University Press, Cambridge (2003)Google Scholar
  9. 9.
    Carlip, S.: Quantum gravity in 2+1 dimensions: the case of a closed universe. Living Rev. Relativ. 8(1) (2005)Google Scholar
  10. 10.
    Dirac P.A.M.: Fixation of coordinates in the Hamiltonian theory of gravitation. Phys. Rev. 114(3), 924–930 (1959)MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    Freidel, L.: Reconstructing AdS/CFT. arXiv:0804.0632 (2008)Google Scholar
  12. 12.
    Ginsparg, P., Moore, G.: Lectures on 2D gravity and 2D string theory (TASI 1992). arXiv:hep-th/9304011 (1993)Google Scholar
  13. 13.
    Gomes H., Gryb S., Koslowski T.: Einstein gravity as a 3D conformally invariant theory. Class. Quantum Gravity 28(4), 045005 (2011)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Gomes, H., Gryb, S., Koslowski, T., Mercati, F.: The gravity/CFT correspondence. arXiv:1105.0938 (2011)Google Scholar
  15. 15.
    Gomes H., Koslowski T.: The link between general relativity and shape dynamics. Class. Quantum Grav. 29(7), 075009 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Khalatnikov I.M., Lifshitz E.M.: General cosmological solution of the gravitational equations with a singularity in time. Phys. Rev. Lett. 24(2), 76–79 (1970)ADSCrossRefGoogle Scholar
  17. 17.
    Martinec E.: Soluble systems in quantum gravity. Phys. Rev. D 30(6), 1198–1204 (1984)MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    Moncrief V.: Reduction of the Einstein equations in 2+1 dimensions to a Hamiltonian system over Teichmüller space. J. Math. Phys. 30(12), 2907–2914 (1989)MathSciNetADSMATHCrossRefGoogle Scholar
  19. 19.
    Ó Murchadha N., York J.W.: Existence and uniqueness of solutions of the Hamiltonian constraint of general relativity on compact manifolds. J. Math. Phys. 14(11), 1551 (1973)ADSMATHCrossRefGoogle Scholar
  20. 20.
    Takhtajan, L.A., Teo, L.: Weil-Petersson metric on the universal Teichmüller space I: curvature properties and Chern forms. arXiv:math/0312172 (2003)Google Scholar
  21. 21.
    Wolpert, S.A.: The Weil-Petersson metric geometry. In: Handbook of Teichmüller geometry, IRMA Lectures in Mathematics and Theoretical Physics, vol. 2 (2007)Google Scholar
  22. 22.
    Wolpert, S.A.: Geodesic-length functions and the Weil-Petersson curvature tensor. arXiv:1008.2293 (2010)Google Scholar
  23. 23.
    York J.W.: Role of conformal three-geometry in the dynamics of gravitation. Phys. Rev. Lett. 28(16), 1082–1085 (1972)ADSCrossRefGoogle Scholar
  24. 24.
    York J.W.: Conformally invariant orthogonal decomposition of symmetric tensors on Riemannian manifolds and the initial-value problem of general relativity. J. Math. Phys. 14(4), 456 (1973)MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsUtrecht UniversityUtrechtThe Netherlands
  2. 2.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations