General Relativity and Gravitation

, Volume 44, Issue 6, pp 1361–1391 | Cite as

Relative velocities for radial motion in expanding Robertson-Walker spacetimes

Research Article


The expansion of space, and other geometric properties of cosmological models, can be studied using geometrically defined notions of relative velocity. In this paper, we consider test particles undergoing radial motion relative to comoving (geodesic) observers in Robertson-Walker cosmologies, whose scale factors are increasing functions of cosmological time. Analytical and numerical comparisons of the Fermi, kinematic, astrometric, and the spectroscopic relative velocities of test particles are given under general circumstances. Examples include recessional comoving test particles in the de Sitter universe, the radiation-dominated universe, and the matter-dominated universe. Three distinct coordinate charts, each with different notions of simultaneity, are employed in the calculations. It is shown that the astrometric relative velocity of a radially receding test particle cannot be superluminal in any expanding Robertson-Walker spacetime. However, necessary and sufficient conditions are given for the existence of superluminal Fermi speeds, and it is shown how the four concepts of relative velocity determine geometric properties of the spacetime.


Robertson-Walker cosmology Relative velocity Fermi coordinates Optical coordinates Hubble flow Expansion of space 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Soffel M. et al.: The IAU 2000 resolutions for astrometry, celestial mechanics and metrology in the relativistic framework: explanatory supplement. Astron. J. 126, 2687–2706 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    Lindegren L., Dravins D.: The fundamental definition of ‘radial velocity’. Astron. Astrophys. 401, 1185–1202 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    Bolós V.J., Liern V., Olivert J.: Relativistic simultaneity and causality. Int. J. Theor. Phys. 41, 1007–1018 (2002)MATHCrossRefGoogle Scholar
  4. 4.
    Bolós V.J.: Lightlike simultaneity, comoving observers and distances in general relativity. J. Geom. Phys. 56, 813–829 (2006)MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    Bolós V.J.: Intrinsic definitions of “relative velocity” in general relativity. Commun. Math. Phys. 273, 217–236 (2007)ADSMATHCrossRefGoogle Scholar
  6. 6.
    Klein D., Collas P.: Recessional velocities and Hubble’s law in Schwarzschild-de Sitter space. Phys. Rev. D 81, 063518 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    Klein D., Randles E.: Fermi coordinates, simultaneity, and expanding space in Robertson-Walker cosmologies. Ann. Henri Poincaré 12, 303–328 (2011)MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    Carrera, M.: Geometrical methods for kinematics and dynamics in relativistic theories of gravity with applications to cosmology and space physics. PhD Dissertation (2010)Google Scholar
  9. 9.
    Doran R., Lobo F.S.N., Crawford P.: Interior of a Schwarzschild black hole revisited. Found. Phys. 38, 160–187 (2008)MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    Narlikar J.V.: Spectral shifts in general relativity. Am. J. Phys. 62(10), 903–907 (1994)ADSCrossRefGoogle Scholar
  11. 11.
    Lachièze-Rey M.: The covariance of GPS coordinates and frames. Class. Quantum Gravit. 23, 3531–3544 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    Bunn E.F., Hogg D.W.: The kinematic origin of the cosmological redshift. Am. J. Phys. 77(8), 688–694 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    Carrera M., Giulini D.: Influence of global cosmological expansion on local dynamics and kinematics. Rev. Mod. Phys. 82, 169–208 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    Fermi E.: Sopra i fenomeni che avvengono in vicinanza di una linea oraria. Atti R. Accad. Naz. Lincei, Rendiconti, Cl. sci. fis. mat & nat. 31, 21–23, 51–52, 101–103 (1922)Google Scholar
  15. 15.
    Ellis G.F.R. et al.: Ideal observational cosmology. Phys. Rep. 124, 315–417 (1985)MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Chicone C., Mashhoon B.: Explicit Fermi coordinates and tidal dynamics in de Sitter and Goedel spacetimes. Phys. Rev. D 74, 064019 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    Klein D., Collas P.: Exact Fermi coordinates for a class of spacetimes. J. Math. Phys. 51, 022501 (2010)MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    Klein D., Collas P.: General transformation formulas for Fermi-Walker coordinates. Class. Quantum Gravit. 25, 145019 (2008)MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Walker A.G.: Note on relativistic mechanics. Proc. Edin. Math. Soc. 4, 170–174 (1935)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Dpto. Matemáticas para la Economía y la Empresa, Facultad de EconomíaUniversidad de ValenciaValenciaSpain
  2. 2.Department of Mathematics and Interdisciplinary Research Institute for the SciencesCalifornia State UniversityNorthridgeUSA

Personalised recommendations