General Relativity and Gravitation

, Volume 44, Issue 4, pp 1007–1014 | Cite as

Big bounce from spin and torsion

Research Article

Abstract

The Einstein-Cartan-Sciama-Kibble theory of gravity naturally extends general relativity to account for the intrinsic spin of matter. Spacetime torsion, generated by spin of Dirac fields, induces gravitational repulsion in fermionic matter at extremely high densities and prevents the formation of singularities. Accordingly, the big bang is replaced by a bounce that occurred when the energy density \({\epsilon \propto gT^4}\) was on the order of \({n^2/m_{\rm Pl}^2}\) (in natural units), where \({n \propto gT^3}\) is the fermion number density and g is the number of thermal degrees of freedom. If the early Universe contained only the known standard-model particles (g ≈ 100), then the energy density at the big bounce was about 15 times larger than the Planck energy. The minimum scale factor of the Universe (at the bounce) was about 1032 times smaller than its present value, giving ≈ 50 μm. If more fermions existed in the early Universe, then the spin-torsion coupling causes a bounce at a lower energy and larger scale factor. Recent observations of high-energy photons from gamma-ray bursts indicate that spacetime may behave classically even at scales below the Planck length, supporting the classical spin-torsion mechanism of the big bounce. Such a classical bounce prevents the matter in the contracting Universe from reaching the conditions at which a quantum bounce could possibly occur.

Keywords

Torsion Spin fluid Bouncing cosmology Nonsingular universe 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kibble T.W.B.: J. Math. Phys. (N.Y.) 2, 212 (1961)MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    Sciama, D.W.: In: Recent Developments in General Relativity, p. 415. Pergamon, New York (1962)Google Scholar
  3. 3.
    Sciama D.W.: Rev. Mod. Phys. 36, 463 (1964)ADSCrossRefGoogle Scholar
  4. 4.
    Sciama D.W.: Rev. Mod. Phys. 36, 1103(E) (1964)ADSGoogle Scholar
  5. 5.
    Hehl F.W.: Phys. Lett. A 36, 225 (1971)MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Hehl F.W.: Gen. Relativ. Gravit. 4, 333 (1973)MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Hehl F.W.: Gen. Relativ. Gravit. 5, 491 (1974)MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Trautman A.: Ann. N.Y. Acad. Sci. 262, 241 (1975)ADSCrossRefGoogle Scholar
  9. 9.
    de Sabbata V., Sivaram C.: Spin and Torsion in Gravitation. World Scientific, Singapore (1994)MATHCrossRefGoogle Scholar
  10. 10.
    Popławski, N.J.: arXiv:0911.0334Google Scholar
  11. 11.
    Hehl F.W., von der Heyde P., Kerlick G.D., Nester J.M.: Rev. Mod. Phys. 48, 393 (1976)ADSCrossRefGoogle Scholar
  12. 12.
    Lord E.A.: Tensors, Relativity and Cosmology. McGraw-Hill, New Delhi (1976)Google Scholar
  13. 13.
    Landau L.D., Lifshitz E.M.: The Classical Theory of Fields. Pergamon, New York (1975)Google Scholar
  14. 14.
    Weyssenhoff J., Raabe A.: Acta Phys. Pol. 9, 7 (1947)MathSciNetGoogle Scholar
  15. 15.
    Obukhov Y.N., Korotky V.A.: Class Quantum Gravit. 4, 1633 (1987)MathSciNetADSMATHCrossRefGoogle Scholar
  16. 16.
    Hehl F.W., von der Heyde P., Kerlick G.D.: Phys. Rev. D 10, 1066 (1974)MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    Nomura K., Shirafuji T., Hayashi K.: Prog. Theor. Phys. 86, 1239 (1991)MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    Kuchowicz B.: Gen. Relativ. Gravit. 9, 511 (1978)MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Kopczyński W.: Phys. Lett. A 39, 219 (1972)ADSCrossRefGoogle Scholar
  20. 20.
    Kopczyński W.: Phys. Lett. A 43, 63 (1973)ADSCrossRefGoogle Scholar
  21. 21.
    Trautman A.: Nature (Phys. Sci.) 242, 7 (1973)ADSGoogle Scholar
  22. 22.
    Tafel J.: Phys. Lett. A 45, 341 (1973)ADSCrossRefGoogle Scholar
  23. 23.
    Gasperini M.: Phys. Rev. Lett. 56, 2873 (1986)ADSCrossRefGoogle Scholar
  24. 24.
    Popławski N.J.: Phys. Lett. B 694, 181 (2010)MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    Popławski N.J.: Phys. Lett. B 701, 672(E) (2011)ADSGoogle Scholar
  26. 26.
    Parker L., Fulling S.A.: Phys. Rev. D 7, 2357 (1973)ADSCrossRefGoogle Scholar
  27. 27.
    Melnikov V.N., Orlov S.V.: Phys. Lett. A 70, 263 (1979)MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    de Barros J.A., Pinto-Neto N., Sagioro-Leal M.A.: Phys. Lett. A 241, 229 (1998)ADSCrossRefGoogle Scholar
  29. 29.
    Peter P., Pinho E.J.C., Pinto-Neto N.: Phys. Rev. D 75, 023516 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    Novello M., Perez Bergliaffa S.E.: Phys. Rept. 463, 127 (2008)MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    Brechet S.D., Hobson M.P., Lasenby A.N.: Class Quantum Gravit. 25, 245016 (2008)MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    Bañados M., Ferreira P.G.: Phys. Rev. Lett. 105, 011101 (2010)MathSciNetADSCrossRefGoogle Scholar
  33. 33.
    Brandenberger, R.H.: arXiv:1103.2271Google Scholar
  34. 34.
    Cai, Y.-F., Chen, S.-H., Dent, J.B., Dutta, S., Saridakis, E.N.: 1104.4349Google Scholar
  35. 35.
    Pathria R.K.: Nature 240, 298 (1972)ADSCrossRefGoogle Scholar
  36. 36.
    Frolov V.P., Markov M.A., Mukhanov V.F.: Phys. Lett. B 216, 272 (1989)MathSciNetADSCrossRefGoogle Scholar
  37. 37.
    Frolov V.P., Markov M.A., Mukhanov V.F.: Phys. Rev. D 41, 383 (1990)MathSciNetADSCrossRefGoogle Scholar
  38. 38.
    Smolin L.: Class Quantum Gravit. 9, 173 (1992)MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    Stuckey W.M.: Am. J. Phys. 62, 788 (1994)MathSciNetADSMATHCrossRefGoogle Scholar
  40. 40.
    Easson D.A., Brandenberger R.H.: J. High Energy Phys. 0106, 024 (2001)MathSciNetADSCrossRefGoogle Scholar
  41. 41.
    Smoller J., Temple B.: Proc. Natl. Acad. Sci. USA 100, 11216 (2003)MathSciNetADSMATHCrossRefGoogle Scholar
  42. 42.
    Popławski N.J.: Phys. Lett. B 687, 110 (2010)MathSciNetADSCrossRefGoogle Scholar
  43. 43.
    Popławski, N.J.: arXiv:1103.4192Google Scholar
  44. 44.
    Peter P., Pinto-Neto N.: Phys. Rev. D 78, 063506 (2008)MathSciNetADSCrossRefGoogle Scholar
  45. 45.
    Kashlinsky A., Atrio-Barandela F., Ebeling H., Edge A., Kocevski D.: Astrophys. J. Lett. 712, L81 (2010)ADSCrossRefGoogle Scholar
  46. 46.
    Bojowald M.: Phys. Rev. Lett. 86, 5227 (2001)MathSciNetADSCrossRefGoogle Scholar
  47. 47.
    Bojowald M.: Nature Phys. 3, 523 (2007)ADSCrossRefGoogle Scholar
  48. 48.
    Ashtekar A., Sloan D.: Phys. Lett. B 694, 108 (2010)MathSciNetADSCrossRefGoogle Scholar
  49. 49.
    Nurgaliev I.S., Ponomariev W.N.: Phys. Lett. B 130, 378 (1983)ADSCrossRefGoogle Scholar
  50. 50.
    Kolb E.W., Turner M.S.: The Early Universe. Addison-Wesley, New York (1990)MATHGoogle Scholar
  51. 51.
    Rich J.: Fundamentals of Cosmology. Springer, Berlin (2001)MATHGoogle Scholar
  52. 52.
    Pati J.C., Salam A.: Phys. Rev. D 10, 275 (1974)ADSCrossRefGoogle Scholar
  53. 53.
    Terazawa H., Chikashige Y., Akama K.: Phys. Rev. D 15, 480 (1977)ADSCrossRefGoogle Scholar
  54. 54.
    Ne’eman Y.: Phys. Lett. B 81, 190 (1979)MathSciNetADSCrossRefGoogle Scholar
  55. 55.
    Harari H.: Phys. Lett. B 86, 83 (1979)ADSCrossRefGoogle Scholar
  56. 56.
    Shupe M.A.: Phys. Lett. B 86, 87 (1979)ADSCrossRefGoogle Scholar
  57. 57.
    Fritzsch H., Mandelbaum G.: Phys. Lett. B 102, 319 (1981)ADSCrossRefGoogle Scholar
  58. 58.
    Laurent P., Götz D., Binétruy P., Covino S., Fernandez-Soto A.: Phys. Rev. D 83, 121301(R) (2011)ADSCrossRefGoogle Scholar
  59. 59.
    Stecker F.W.: Astropart. Phys. 35, 95 (2011)ADSCrossRefGoogle Scholar
  60. 60.
    Nemiroff, R. J., Holmes, J., Connolly, R.: arXiv:1109.5191Google Scholar
  61. 61.
    Larson, D. et al.: (WMAP collaboration). Astrophys. J. Suppl. 192, 16 (2011)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of PhysicsIndiana UniversityBloomingtonUSA

Personalised recommendations