Advertisement

General Relativity and Gravitation

, Volume 44, Issue 3, pp 567–579 | Cite as

Do primordial lithium abundances imply there’s no dark energy?

  • Marco RegisEmail author
  • Chris Clarkson
Editor’s Choice (Research Article)

Abstract

Explaining the well established observation that the expansion rate of the universe is apparently accelerating is one of the defining scientific problems of our age. Within the standard model of cosmology, the repulsive ‘dark energy’ supposedly responsible has no explanation at a fundamental level, despite many varied attempts. A further important dilemma in the standard model is the lithium problem, which is the substantial mismatch between the theoretical prediction for 7Li from Big Bang Nucleosynthesis and the value that we observe today. This observation is one of the very few we have from along our past worldline as opposed to our past lightcone. By releasing the untested assumption that the universe is homogeneous on very large scales, both apparent acceleration and the lithium problem can be easily accounted for as different aspects of cosmic inhomogeneity, without causing problems for other cosmological phenomena such as the cosmic microwave background. We illustrate this in the context of a void model.

Keywords

Big bang nucleosynthesis Cosmology Dark energy Inhomogeneous cosmological models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Caldwell R.R., Kamionkowski M.: Annu. Rev. Nucl. Part. Sci. 59, 397–429 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    Moffat J.W., Tatarski D.C.: Astrophys. J. 453, 17 (1995) [arXiv:astro-ph/9407036]ADSCrossRefGoogle Scholar
  3. 3.
    Célérier, M.N.: In: Barret, D., Casoli, F., Lagache, G., Lecavelier, A., Pagani L. (eds.) SF2A-2006: Semaine de l’Astrophysique Francaise Accelerated-like Expansion: Inhomogeneities Versus Dark Energy. pp. 257–+ (2006)Google Scholar
  4. 4.
    Garcia-Bellido J., Haugbølle T.: J. Cosmol. Astropart. Phys. 4, 3 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    February, S., Larena, J., Smith, M., Clarkson, C.: arXiv:0909.1479 [astro-ph.CO]Google Scholar
  6. 6.
    Vanderveld R.A., Flanagan É.É., Wasserman I.: Phys. Rev. D 74, 023506 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    Steigman G.: Ann. Rev. Nucl. Part. Sci. 57, 463 (2007) [arXiv:0712.1100 [astro-ph]]ADSCrossRefGoogle Scholar
  8. 8.
    Iocco F., Mangano G., Miele G., Pisanti O., Serpico P.D.: Phys. Rept. 472, 1 (2009) [arXiv: 0809.0631 [astro-ph]]ADSCrossRefGoogle Scholar
  9. 9.
    Pettini M., Zych B.J., Murphy M.T., Lewis A., Steidel C.C.: Mon. Not. Roy. Astron. Soc. 391, 1499 (2008) [arXiv:0805.0594 [astro-ph]]ADSCrossRefGoogle Scholar
  10. 10.
    Cyburt R.H., Fields B.D., Olive K.A.: JCAP 0811, 012 (2008) [arXiv:0808.2818 [astro-ph]]ADSGoogle Scholar
  11. 11.
    Asplund M., Lambert D.L., Nissen P.E., Primas F., Smith V.V.: Astrophys. J. 644, 229 (2006) [arXiv: astro-ph/0510636]ADSCrossRefGoogle Scholar
  12. 12.
    Spite, M., Spite, F.: arXiv:1002.1004 [astro-ph.GA]Google Scholar
  13. 13.
    Korn A.J. et al.: Nature 442, 657 (2006) [arXiv:astro-ph/0608201]ADSCrossRefGoogle Scholar
  14. 14.
    Melendez, J., Casagrande, L., Ramirez, I., Asplund, M., Schuster, W.: arXiv:1005.2944 [astro-ph.SR]Google Scholar
  15. 15.
    Richard, O., Michaud, G., Richer, J.: Astrophys. J.619, 538 (2005) [arXiv:astro-ph/0409672]Google Scholar
  16. 16.
    Sbordone, L. et al.: arXiv:1003.4510 [astro-ph.GA]Google Scholar
  17. 17.
    Monaco, L., Bonifacio, P., Sbordone, L., Villanova, S., Pancino, E.: arXiv:1008.1817 [astro-ph.GA]Google Scholar
  18. 18.
    Hernandez, J.I.G. et al.: arXiv:0912.4105 [astro-ph.GA]Google Scholar
  19. 19.
    Aver E., Olive K.A., Skillman E.D.: JCAP 1005, 003 (2010) [arXiv:1001.5218 [astro-ph.CO]]ADSGoogle Scholar
  20. 20.
    Izotov, Y.I., Thuan, T.X.: Astrophys. J. 710, L67 (2010) [arXiv:1001.4440 [astro-ph.CO]]Google Scholar
  21. 21.
    Prodanovic, T., Steigman, G., Fields, B.D.: arXiv:0910.4961 [astro-ph.GA]Google Scholar
  22. 22.
    Romano D., Tosi M., Chiappini C., Matteucci F.: Mon. Not. R. Astron. Soc. 369, 295 (2006) [arXiv: astro-ph/0603190]ADSCrossRefGoogle Scholar
  23. 23.
    Romano, D.: arXiv:0912.3737 [astro-ph.GA]Google Scholar
  24. 24.
    Sembach, K.: Measurements of deuterium in the Milky Way. In: Proceeding of the IAU Symposium 268 “Light elements in the Universe”Google Scholar
  25. 25.
    Fields, B.D., Olive, K.A., Silk, J., Casse, M., Vangioni-Flam, E.: Astrophys. J. 563, 653 (2001) [arXiv: astro-ph/0107389]Google Scholar
  26. 26.
    Holder, G.P., Nollett, K.M., van Engelen, A.: arXiv:0907.3919 [astro-ph.CO]Google Scholar
  27. 27.
    Allen S.W., Rapetti D.A., Schmidt R.W., Ebeling H., Morris G., Fabian A.C.: Mon. Not. R. Astron. Soc. 383, 879 (2008) [arXiv:0706.0033 [astro-ph]]ADSCrossRefGoogle Scholar
  28. 28.
    Lara J.F., Kajino T., Mathews G.J.: Phys. Rev. D 73, 083501 (2006) [arXiv:astro-ph/0603817]ADSCrossRefGoogle Scholar
  29. 29.
    Malaney R.A., Mathews G.J.: Phys. Rep. 229, 145 (1993)ADSCrossRefGoogle Scholar
  30. 30.
    Clarkson, C., Regis, M.: arXiv:1007.3443 [astro-ph.CO]Google Scholar
  31. 31.
    Hu W., Dodelson S.: Ann. Rev. Astron. Astrophys. 40, 171 (2002) [arXiv:astro-ph/0110414]ADSCrossRefGoogle Scholar
  32. 32.
    Wang Y., Mukherjee P.: Phys. Rev. D 76, 103533 (2007) [arXiv:astro-ph/0703780]ADSCrossRefGoogle Scholar
  33. 33.
    Komatsu, E. et al.: [WMAP Collaboration], Astrophys. J. Suppl. 180, 330 (2009) [arXiv:0803.0547 [astro-ph]]Google Scholar
  34. 34.
  35. 35.
    Riess A.G. et al.: Astrophys. J. 699, 539 (2009) [arXiv:0905.0695 [astro-ph.CO]]ADSCrossRefGoogle Scholar
  36. 36.
    Sollerman J. et al.: Astrophys. J. 703, 1374 (2009) [arXiv:0908.4276 [astro-ph.CO]]ADSCrossRefGoogle Scholar
  37. 37.
    Clifton T., Ferreira P.G., Zuntz J.: JCAP 0907, 029 (2009) [arXiv:0902.1313 [astro-ph.CO]]ADSGoogle Scholar
  38. 38.
    Lan, M.-X. et al.: arXiv:1002.0978 [astro-ph.CO]Google Scholar
  39. 39.
    Zibin J.P., Moss A., Scott D.: Phys. Rev. Lett. 101, 251303 (2008) [arXiv:0809.3761 [astro-ph]]ADSCrossRefGoogle Scholar
  40. 40.
    Alnes H., Amarzguioui M., Grøn Ø.: Phys. Rev. D 73, 083519 (2006)ADSCrossRefGoogle Scholar
  41. 41.
    Blomqvist, M., Mörtsell, E.: arXiv:0909.4723 [astro-ph.CO]Google Scholar
  42. 42.
    Yoo, C.M., Nakao, K.i., Sasaki, M.: JCAP 1007, 012 (2010) [arXiv:1005.0048 [astro-ph.CO]]Google Scholar
  43. 43.
    Biswas, T., Notari, A., Valkenburg, W.: arXiv:1007.3065 [astro-ph.CO]Google Scholar
  44. 44.
    Moss, A., Zibin, J.P., Scott, D.: arXiv:1007.3725 [astro-ph.CO]Google Scholar
  45. 45.
    Yoo, C.M., Nakao, K.i., Sasaki, M.: arXiv:1008.0469 [astro-ph.CO]Google Scholar
  46. 46.
    Vonlanthen M., Rasanen S., Durrer R.: JCAP 1008, 023 (2010) [arXiv:1003.0810 [astro-ph.CO]]ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Centre for Astrophysics, Cosmology and Gravity, Department of Mathematics and Applied MathematicsUniversity of Cape TownCape TownSouth Africa
  2. 2.Centre for High Performance ComputingCape TownSouth Africa
  3. 3.Dipartimento di Fisica TeoricaUniversità di TorinoTorinoItaly
  4. 4.Istituto Nazionale di Fisica NucleareTorinoItaly

Personalised recommendations