General Relativity and Gravitation

, Volume 44, Issue 1, pp 21–66 | Cite as

Interacting non-BPS black holes

  • Guillaume BossardEmail author
  • Clément Ruef
Research Article


We explain how to exploit systematically the structure of nilpotent orbits to obtain a solvable system of equations describing extremal solutions of (super-)gravity theories, i.e. systems that can be solved in a linear way. We present the procedure in the case of the STU model, where we show that all extremal solutions with a flat three-dimensional base are fully described with the help of three different nilpotent orbits: the BPS, the almost-BPS and the composite non-BPS. The latter describes a new class of solutions for which the orientation of half of the constituent branes have been inverted with respect to the BPS one, such that all the centres are intrinsically non-BPS, and interact with each others. We finally recover explicitly the ensemble of the almost-BPS solutions in our formalism and present an explicit two-centre solution of the new class.


Black holes Supergravity Nilpotent orbit 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Strominger A., Vafa C.: Microscopic origin of the Bekenstein-Hawking entropy. Phys. Lett. B 379, 99 (1996)CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Emparan R., Horowitz G.T.: Microstates of a neutral black hole in M theory. Phys. Rev. Lett. 97, 141601 (2006)CrossRefADSGoogle Scholar
  3. 3.
    Dabholkar A., Sen A., Trivedi S.P.: Black hole microstates and attractor without supersymmetry. J. High Energy Phys. 0701, 096 (2007)CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Astefanesei D., Goldstein K., Mahapatra S.: Moduli and (un)attractor black hole thermodynamics. Gen. Relativ. Gravit. 40, 2069 (2008)CrossRefzbMATHADSMathSciNetGoogle Scholar
  5. 5.
    Denef F.: Supergravity flows and D-brane stability. J. High Energy Phys. 0008, 050 (2000)CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Ceresole A., Dall’Agata G.: Flow equations for non-BPS extremal black holes. JHEP 0703, 110 (2007)CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Lopes Cardoso G., Ceresole A., Dall’Agata G. et al.: First-order flow equations for extremal black holes in very special geometry. J. High Energy Phys. 0710, 063 (2007)CrossRefGoogle Scholar
  8. 8.
    Ceresole A., Dall’Agata G., Ferrara S., Yeranyan A.: First order flows for \({\mathcal{N} = 2}\) extremal black holes and duality invariants. Nucl. Phys. B 824, 239 (2010)CrossRefzbMATHADSMathSciNetGoogle Scholar
  9. 9.
    Goldstein K., Katmadas S.: Almost BPS black holes. J. High Energy Phys. 0905, 058 (2009)CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Bena I., Dall’Agata G., Giusto S., Ruef C., Warner N.P.: Non-BPS black rings and black holes in Taub-NUT. J. High Energy Phys. 0906, 015 (2009)CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Bena I., Giusto S., Ruef C., Warner N.P.: Multi-center non-BPS black holes: the solution. J. High Energy Phys. 0911, 032 (2009)CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Bena I., Giusto S., Ruef C., Warner N.P.: Supergravity solutions from floating branes. J. High Energy Phys. 1003, 047 (2010)CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Giusto, S., Dall’Agata, G., Ruef, C.: U-duality and non-BPS solutions. JHEP 1102, 074 (2011)Google Scholar
  14. 14.
    Bena, I., Giusto, S., Ruef, C.: A black ring with two angular momenta in Taub-NUT. JHEP 1106, 140 (2011)Google Scholar
  15. 15.
    Goldstein K., Iizuka N., Jena R.P., Trivedi S.P.: Non-supersymmetric attractors. Phys. Rev. D 72, 124021 (2005)CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Hotta K., Kubota T.: Exact solutions and the attractor mechanism in non-BPS black holes. Prog. Theor. Phys. 118, 969 (2007)CrossRefzbMATHADSGoogle Scholar
  17. 17.
    Gimon E.G., Larsen F., Simon J.: Black holes in supergravity: the non-BPS branch. J. High Energy Phys. 0801, 040 (2008)CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Gimon E.G., Larsen F., Simon J.: Constituent model of extremal non-BPS black holes. J. High Energy Phys. 0907, 052 (2009)CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Gaiotto D., Li W.W., Padi M.: Non-supersymmetric attractor flow in symmetric spaces. J. High Energy Phys. 0712, 093 (2007)CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Andrianopoli L., D’Auria R., Orazi E., Trigiante M.: First order description of black holes in moduli space. J. High Energy Phys. 0711, 032 (2007)CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Andrianopoli L., D’Auria R., Orazi E., Trigiante M.: First order description of D = 4 static black holes and the Hamilton–Jacobi equation. Nucl. Phys. B 833, 1 (2010)CrossRefzbMATHADSMathSciNetGoogle Scholar
  22. 22.
    Bossard G., Michel Y., Pioline B.: Extremal black holes, nilpotent orbits and the true fake superpotential. J. High Energy Phys. 1001, 038 (2010)CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    Ceresole A., Dall’Agata G., Ferrara S., Yeranyan A.: Universality of the superpotential for d = 4 extremal black holes. Nucl. Phys. B 832, 358 (2010)CrossRefzbMATHADSMathSciNetGoogle Scholar
  24. 24.
    Perz J., Smyth P., Van Riet T., Vercnocke B.: First-order flow equations for extremal and non-extremal black holes. J. High Energy Phys. 0903, 150 (2009)CrossRefADSMathSciNetGoogle Scholar
  25. 25.
    Kim S.S., Hornlund J.L., Palmkvist J., Virmani A.: Extremal solutions of the S 3 model and nilpotent orbits of G 2(2). J. High Energy Phys. 1008, 072 (2010)CrossRefADSGoogle Scholar
  26. 26.
    Galli P., Goldstein K., Katmadas S., Perz J.: First-order flows and stabilisation equations for non-BPS extremal black holes. J. High Energy Phys. 1106, 070 (2011)CrossRefADSGoogle Scholar
  27. 27.
    Galli, P., Ortin, T., Perz, J., Shahbazi, C.S.: Non-extremal black holes of \({\mathcal{N} = 2, d = 4}\) supergravity. JHEP 1107, 041 (2011)Google Scholar
  28. 28.
    Breitenlohner P., Maison D., Gibbons G.W.: Four-dimensional black holes from Kaluza–Klein theories. Commun. Math. Phys. 120, 295 (1988)CrossRefzbMATHADSMathSciNetGoogle Scholar
  29. 29.
    Hornlund, J.L.: On the symmetry orbits of black holes in non-linear sigma models (2011)Google Scholar
  30. 30.
    Bossard G., Nicolai H., Stelle K.S.: Universal BPS structure of stationary supergravity solutions. J. High Energy Phys. 0907, 003 (2009)CrossRefADSMathSciNetGoogle Scholar
  31. 31.
    Bossard G., Nicolai H.: Multi-black holes from nilpotent Lie algebra orbits. Gen. Relativ. Gravit. 42, 509–537 (2010)CrossRefzbMATHADSMathSciNetGoogle Scholar
  32. 32.
    Bossard, G.: 1/8 BPS black hole composites (2010)Google Scholar
  33. 33.
    Bates, B., Denef, F.: Exact solutions for supersymmetric stationary black hole composites (2003)Google Scholar
  34. 34.
    Collingwood, D., McGovern, W.: Nilpotent orbits in semisimple Lie algebras. Van Nostrand Reinhold Mathematics Series, New York (1993)Google Scholar
  35. 35.
    Sekiguchi J.: Remarks on real nilpotent orbits of a symmetric pair. J. Math. Soc. Japan 39, 127–138 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Đoković D. Ž., Lemire N., Sekiguchi J.: The closure ordering of adjoint nilpotent orbits in \({\mathfrak{so}(p, q)}\) . Tohoku Math. J. 53, 395 (2001)CrossRefMathSciNetGoogle Scholar
  37. 37.
    Denef, F., Moore, G.W.: Split states, entropy enigmas, holes and halos (2007)Google Scholar
  38. 38.
    Behrndt K., Kallosh R., Rahmfeld J. et al.: STU black holes and string triality. Phys. Rev. D 54, 6293 (1996)CrossRefADSMathSciNetGoogle Scholar
  39. 39.
    Bena I., Warner N.P.: Bubbling supertubes and foaming black holes. Phys. Rev. D 74, 066001 (2006)CrossRefADSMathSciNetGoogle Scholar
  40. 40.
    Berglund P., Gimon E.G., Levi T.S.: Supergravity microstates for BPS black holes and black rings. J. High Energy Phys. 0606, 007 (2006)CrossRefADSMathSciNetGoogle Scholar
  41. 41.
    Saxena A., Potvin G., Giusto S., Peet A.W.: Smooth geometries with four charges in four dimensions. J. High Energy Phys. 0604, 010 (2006)CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Centre de Physique Théorique, Ecole Polytechnique, CNRSPalaiseau cedexFrance
  2. 2.Max Planck Institute for Gravitation, Albert Einstein InstituteGolmGermany

Personalised recommendations