General Relativity and Gravitation

, Volume 43, Issue 12, pp 3619–3655 | Cite as

Probability of inflation in loop quantum cosmology

  • Abhay AshtekarEmail author
  • David Sloan
Research Article


Inflationary models of the early universe provide a natural mechanism for the formation of large scale structure. This success brings to forefront the question of naturalness: Does a sufficiently long slow roll inflation occur generically or does it require a careful fine tuning of initial parameters? In recent years there has been considerable controversy on this issue (Hollands and Wald in Gen Relativ Gravit, 34:2043, 2002; Kofman et al. in J High Energy Phys 10:057, 2002); (Gibbons and Turok in Phys Rev D 77:063516, 2008). In particular, for a quadratic potential, Kofman et al. (J High Energy Phys 10:057, 2002) have argued that the probability of inflation with at least 65 e-foldings is close to one, while Gibbons and Turok (Phys Rev D 77:063516, 2008) have argued that this probability is suppressed by a factor of ~10−85. We first clarify that such dramatically different predictions can arise because the required measure on the space of solutions is intrinsically ambiguous in general relativity. We then show that this ambiguity can be naturally resolved in loop quantum cosmology (LQC) because the big bang is replaced by a big bounce and the bounce surface can be used to introduce the structure necessary to specify a satisfactory measure. The second goal of the paper is to present a detailed analysis of the inflationary dynamics of LQC using analytical and numerical methods. By combining this information with the measure on the space of solutions, we address a sharper question than those investigated in Kofman et al. (J High Energy Phys 10:057, 2002), Gibbons and Turok (Phys Rev D 77:063516, 2008), Ashtekar and Sloan (Phys Lett B 694:108, 2010): What is the probability of a sufficiently long slow roll inflation which is compatible with the seven year WMAP data? We show that the probability is very close to 1. The material is so organized that cosmologists who may be more interested in the inflationary dynamics in LQC than in the subtleties associated with measures can skip that material without loss of continuity.


Loop quantum gravity Cosmology Inflation Measures Probability WMAP 7 year data 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Komatsu, E., et al.: Seven-Year Wilkinson microwave anisotropy probe (WMAP) Observations: Cosmological interpretation, (2010), eprint [arXiv:hep-th/1001.4538]Google Scholar
  2. 2.
    Gibbons G.W., Hawking S.W., Stewart J.: Nucl. Phys. B 281, 736 (1987)MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Page D.N.: Phys. Rev. D 36, 1607 (1987)MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Hawking S.W., Page D.N.: Nucl. Phys. B 298, 789 (1988)MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    Hollands, S., Wald, R.M.: Comment on Inflation and Alternative Cosmology, eprint [arXiv: hep-th/021000]Google Scholar
  6. 6.
    Corichi A., Karami A.: On the measure problem in slow roll inflation and loop quantum cosmology. Phys. Rev. D 83, 104006 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    Kofman L.A., Linde A., Mukhanov V.F.: Inflationary theory and alternative cosmology. J. High Energy Phys. 10, 057 (2002)MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Gibbons G.W., Turok N.: The measure problem in cosmology. Phys. Rev. D 77, 063516 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    Ashtekar A., Pawlowski T., Singh P.: Quantum nature of the big bang. Phys. Rev. Lett. 96, 141301 (2006)MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Ashtekar A., Pawlowski T., Singh P.: Quantum nature of the big bang: improved dynamics. Phys. Rev. D 74, 084003 (2006)MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Ashtekar A., Pawlowski T., Singh P., Vandersloot K.: Loop quantum cosmology of k = 1 FRW models. Phys. Rev. D 75, 024035 (2007)MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Bentivegna E., Pawlowski T.: Anti-deSitter universe dynamics in LQC. Phys. Rev. D 77, 124025 (2008)MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Ashtekar A., Corichi A., Singh P.: Robustness of key features of loop quantum cosmology. Phys. Rev. D 77, 024046 (2008)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Ashtekar A., Sloan D.: Loop quantum cosmology and slow roll inflation. Phys. Lett. B 694, 108 (2010) eprint [arXiv:gr-qc/0912.4093]MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    Linde A.: Inflation and string cosmology. Prog. Theor. Phys. Suppl. 163, 295 (2006)MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Bojowald M.: Inflation from quantum geometry. Phys. Rev. Lett. 89, 261301 (2002)MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    Singh P.: Cosmological dynamics and dualities with Randall–Sundrum braneworlds. Phys. Rev. D 73, 063508 (2006)MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    Agullo, I., Ashtekar, A., Nelson, W.: (2011, in preparation)Google Scholar
  19. 19.
    Ashtekar A., Lewandowski J.: Background independent quantum gravity: a status report. Class. Quantum Gravity 21, R53 (2004)MathSciNetADSzbMATHCrossRefGoogle Scholar
  20. 20.
    Rovelli C.: Quantum Gravity. Cambridge University Press, Cambridge (2004)zbMATHCrossRefGoogle Scholar
  21. 21.
    Thiemann T.: Introduction to Modern Canonical Quantum General Relativity. Cambridge University Press, Cambridge (2007)CrossRefGoogle Scholar
  22. 22.
    Ashtekar A., Baez J., Krasnov K.: Quantum geometry of isolated horizons and black hole entropy. Adv. Theor. Math. Phys. 4, 1 (2000)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Agullo I., Fernando Barbero J., Borja G.E.F., Diaz-Polo J., Villasen E.J.S.: Detailed black hole state counting in loop quantum gravity. Phys. Rev. D 82, 084029 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    Bojowald M.: Absence of singularity in loop quantum cosmology. Phys. Rev. Lett. 86, 5227 (2001)MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    Ashtekar A., Wilson-Ewing E.: Loop quantum cosmology of Bianchi I models. Phys. Rev. D 79, 083535 (2009)MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    Ashtekar A., Wilson-Ewing E.: Loop quantum cosmology of Bianchi type II models. Phys. Rev. D 80, 123532 (2009)MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    Wilson Ewing E.: Loop quantum cosmology of Bianchi type IX models. Phys. Rev. D 82, 043508 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    Mena Marugan G., Martin-Benito M.: Hybrid quantum cosmology: combining loop and fock quantizations. Int. J. Mod. Phys.A 24, 2820 (2009)MathSciNetADSzbMATHCrossRefGoogle Scholar
  29. 29.
    Taveras V.: Corrections to the Friedmann equations from LQG for a universe with a free scalar field. Phys. Rev. D 78, 064072 (2008)MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    Singh P.: Are loop quantum cosmos never singular?. Class. Quantum Gravity 26, 125005 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    Ashtekar, A.: Loop quantum cosmology: an overview. Gen. Relativ. Gravit. 41, 707 (2009); The big bang and the quantum. In: Alimi, J.-M., Füzfa, A. (eds.) AIP Conference Proceedings, vol. 1241, pp. 109–121 (2010), eprint [arXiv:hep-th/1005.5491]Google Scholar
  32. 32.
    de Laplace, P.S.: Théorie analytique des probabilités (Courcier, Paris, 1812). A philosophical essay on probabilities (trans: Dale, A.I.). Springer, New York (1995)Google Scholar
  33. 33.
    Belinsky V.A., Khalatnikov I.M., Grishchuk L.P., Zeldovich Y.B.: Inflationary stages in cosmological models with a scalar field. Phys. Lett. B 155, 232 (1985)MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    Liddle A.R., Parson P., Barrow J.D.: Formalising the slow roll approximation in inflation. Phys. Rev. D 50, 7222 (1994)ADSCrossRefGoogle Scholar
  35. 35.
    Sloan, D.: (2011, in preparation)Google Scholar
  36. 36.
    Sigh P., Vandersloot K., Vereshchagin G.V.: Non-Singular bouncing universes in loop quantum cosmology. Phys. Rev. D 74, 043510 (2006)ADSCrossRefGoogle Scholar
  37. 37.
    Foster, S.: Scalar field cosmologies and the initial space-time singularity, (1998), eprint [arXiv:gr-qc/9806098]Google Scholar
  38. 38.
    Taveras V., Yunes N.: The Barbero–Immirzi parameter as a scalar field: K-inflation from loop quantum gravity?. Phys. Rev. D 78, 064070 (2008)MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    Hollands S., Wald R.M.: An alternative to inflation. Gen. Relativ. Gravit. 34, 2043 (2002)MathSciNetADSzbMATHCrossRefGoogle Scholar
  40. 40.
    Germani C., Nelson W., Sakellariadou M.: On the onset of inflation in loop quantum cosmology. Phys. Rev. D 76, 043529 (2007)MathSciNetADSCrossRefGoogle Scholar
  41. 41.
    Grain J., Barrau A.: Cosmological footprints of loop quantum gravity. Phys. Rev. Lett. 102, 081301 (2009)MathSciNetADSCrossRefGoogle Scholar
  42. 42.
    Grain J., Cailleteau T., Barrau A., Gorecki A.: Fully loop-quantum-cosmology-corrected propagation of gravitational waves during slow-roll inflation. Phys. Rev. D 81, 024040 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    Grain J., Barrau A., Cailleteau T., Mielczarek J.: Observing the big bounce with tensor modes in the cosmic microwave background: phenomenology and fundamental LQC parameters. Phys. Rev. D 82, 123520 (2010)ADSCrossRefGoogle Scholar
  44. 44.
    Mielczarek J., Cailleteau T., Grain J., Barrau A.: Inflation in loop quantum cosmology: dynamics and spectrum of gravitational waves. Phys. Rev. D 81, 104049 (2010)ADSCrossRefGoogle Scholar
  45. 45.
    Barrau, A.: Inflation and Loop Quantum Cosmology, (2010), eprint [arXiv:gr-qc/1011.5516]Google Scholar
  46. 46.
    Ashtekar, A., Kaminski, W., Lewandowski, J.: Quantum field theory on a cosmological, quantum space-time. Phys. Rev. D 79, 064030 (2009), eprint [arXiv:gr-qc/0901.0933]Google Scholar
  47. 47.
    Cortez, J., Mena Marugan, G.A., Olmedo, J., Velhinho, J.M.: A unique Fock quantization for fields in non-stationary spacetimes. JCAP 1010, 030 (2010). Uniqueness of the Fock quantization of fields with unitary dynamics in nonstationary spacetimes. Phys. Rev. D 83, 025002 (2011)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Institute for Gravitation and the Cosmos, Physics DepartmentPenn StateUniversity ParkUSA
  2. 2.Institute for Theoretical PhysicsUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations