Advertisement

General Relativity and Gravitation

, Volume 43, Issue 12, pp 3269–3288 | Cite as

Worldtube conservation laws for the null-timelike evolution problem

  • Jeffrey WinicourEmail author
Research Article

Abstract

I treat the worldtube constraints which arise in the null-timelike initial-boundary value problem for the Bondi-Sachs formulation of Einstein’s equations. Boundary data on a worldtube and initial data on an outgoing null hypersurface determine the exterior spacetime by integration along the outgoing null geodsics. The worldtube constraints are a set of conservation laws which impose conditions on the integration constants. I show how these constraints lead to a well-posed initial value problem governing the extrinsic curvature of the worldtube, whose components are related to the integration constants. Possible applications to gravitational waveform extraction and to the well-posedness of the null-timelike initial-boundary value problem are discussed.

Keywords

Conservation laws Gravitational waves Boundary conditions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goldberg, J.N.: Strong conservation laws and equations of motion in covariant field theories. Phys. Rev. 89, 263 (1953)ADSzbMATHCrossRefGoogle Scholar
  2. 2.
    Goldberg, J.N.: Conservation laws in general relativity. Phys. Rev. 111, 315 (1958)MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    Goldberg, J.N.: Conservation equations and equations of motion in the null formalism. Gen. Relativ. Gravit. 5, 183 (1974)ADSCrossRefGoogle Scholar
  4. 4.
    Bondi H., van der Burg M.J.G., Metzner A.W.K.: Proc. R. Soc. A 269, 21 (1962)ADSzbMATHCrossRefGoogle Scholar
  5. 5.
    Sachs R.K.: Proc. R. Soc. A 270, 103 (1962)MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 6.
    Penrose R.: Phys. Rev. Lett. 10, 66 (1963)MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Newman E.T., Posadas R.: J. Math. Phys. 12, 2319 (1971)ADSCrossRefGoogle Scholar
  8. 8.
    Lind R.W., Messmer J., Newman E.T.: J. Math. Phys. 13, 1884 (1972)MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Stewart, J.M.: The cauchy problem and the initial boundary value problem in numerical relativity Class. Quan. Grav. 15, 2865 (1998)ADSzbMATHCrossRefGoogle Scholar
  10. 10.
    Friedrich H., Nagy G.: Commun. Math. Phys. 201, 619 (1999)MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. 11.
    Kreiss H.-O., Winicour J.: Class. Quan. Grav. 23, S405 (2006)MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 12.
    Hawking S.W., Ellis G.F.R.: The Large Scale Structure of Space Time. Cambridge University Press, Cambridge (1973)zbMATHCrossRefGoogle Scholar
  13. 13.
    Winicour J.: J. Math. Phys. 24, 1193 (1983)MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. 14.
    Winicour J.: J. Math. Phys. 25, 2506 (1984)MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    Tamburino L.A., Winicour J.: Phys. Rev. 150, 1039 (1966)ADSCrossRefGoogle Scholar
  16. 16.
    Kreiss, H.-O., Lorenz, J.: Initial-Boundary Value Problems and the Navier-Stokes Equations, 1989. Reprint SIAM CLASSICS (2004)Google Scholar
  17. 17.
    Bishop N.T., Gómez R., Lehner L., Szilágyi B., Winicour J., Isaacson R.A.: Cauchy-characteristic matching. In: Iyer, B., Bhawal, B. (eds) Black Holes, Gravitational Radiation and the Universe, Kluwer Academic Publishers, Dordrecht (1998)Google Scholar
  18. 18.
    Bishop N.T., Gómez R., Lehner L., Winicour J.: Phys. Rev. D 54, 6153 (1996)MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Bartnik R.: Class. Quan. Grav. 14, 2185 (1997)MathSciNetADSzbMATHCrossRefGoogle Scholar
  20. 20.
    Rendall A.D.: Proc. Roy. Soc. Lond. A 427, 221 (1990)MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of PittsburghPittsburghUSA
  2. 2.Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-InstitutGolmGermany

Personalised recommendations