General Relativity and Gravitation

, Volume 43, Issue 12, pp 3497–3530 | Cite as

The IR stability of de Sitter QFT: physical initial conditions

Research Article


This work uses Lorentz-signature in-in perturbation theory to analyze the late-time behavior of correlators in time-dependent interacting massive scalar field theory in de Sitter space. We study a scenario recently considered by Krotov and Polyakov in which the coupling g turns on smoothly at finite time, starting from g = 0 in the far past where the state is taken to be the (free) Bunch–Davies vacuum. Our main result is that the resulting correlators (which we compute at the one-loop level) approach those of the interacting Hartle–Hawking state at late times. We argue that similar results should hold for other physically-motivated choices of initial conditions. This behavior is to be expected from recent quantum “no hair” theorems for interacting massive scalar field theory in de Sitter space which established similar results to all orders in perturbation theory for a dense set of states in the Hilbert space. Our current work (1) indicates that physically motivated initial conditions lie in this dense set, (2) provides a Lorentz-signature counter-part to the Euclidean techniques used to prove such theorems, and (3) provides an explicit example of the relevant renormalization techniques.


QFT De Sitter Stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Collaboration WMAP, Komatsu E. et al.: Five-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation. Astrophys. J. Suppl. 180, 330–376 (2009) [ar-Xiv:0803.0547]ADSCrossRefGoogle Scholar
  2. 2.
    Weinberg S.: Quantum contributions to cosmological correlations. Phys. Rev. D72, 043514 (2005) [hep-th/0506236]MathSciNetADSGoogle Scholar
  3. 3.
    Weinberg S.: Quantum contributions to cosmological correlations. II: can these corrections become large?. Phys. Rev. D74, 023508 (2006) [hep-th/0605244]MathSciNetADSGoogle Scholar
  4. 4.
    Seery D., Lidsey J.E.: Primordial non-gaussianities in single field inflation. JCAP 0506, 003 (2005) [astro-ph/0503692]ADSGoogle Scholar
  5. 5.
    Seery D.: One-loop corrections to a scalar field during inflation. JCAP 0711, 025 (2007) [arXiv:0707.3377]ADSGoogle Scholar
  6. 6.
    Cheung C., Creminelli P., Fitzpatrick A.L., Kaplan J., Senatore L.: The effective field theory of inflation. JHEP 03, 014 (2008) [arXiv:0709.0293]MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Senatore L., Zaldarriaga M.: On loops in inflation. J. High Energy Phys. 2010, 1–55 (2010) [arXiv:0912.2734]CrossRefGoogle Scholar
  8. 8.
    Seery D.: Infrared effects in inflationary correlation functions. Class. Quantum Gravit. 27(12), 124005 (2010) [arXiv:1005.1649]MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Giddings S.B., Sloth M.S.: Semiclassical relations and IR effects in de Sitter and slow-roll space-times. J. Cosmol. Astropart. Phys. 2011(01), 023 (2011) [arXiv:1005.1056]CrossRefGoogle Scholar
  10. 10.
    Giddings, S.B., Sloth, M.S.: Cosmological observables, IR growth of fluctuations, and scale-dependent anisotropies [arXiv:1104.0002]Google Scholar
  11. 11.
    Chialva, D., Mazumdar, A.: Eliminating infrared divergences in an inflationary cosmology [arXiv:1103.1312]Google Scholar
  12. 12.
    Bousso R.: Holographic probabilities in eternal inflation. Phys. Rev. Lett. 97, 191302 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    Guth A.H.: Eternal inflation and its implications. J. Phys. A Math. Theor. 40(25), 6811 (2007)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Hartle J., Hawking S.W., Hertog T.: Local observation in eternal Inflation. Phys. Rev. Lett. 106, 141302 (2011) [arXiv:1009.2525]ADSCrossRefGoogle Scholar
  15. 15.
    Seery D., Lidsey J.E.: Non-Gaussian inflationary perturbations from the dS/CFT correspondence. JCAP 0606, 001 (2006) [astro-ph/0604209]ADSGoogle Scholar
  16. 16.
    Anninos D., Hartman T.: Holography at an extremal De Sitter horizon. JHEP 03, 096 (2010) [arXiv:0910.4587]ADSCrossRefGoogle Scholar
  17. 17.
    Anninos D., Anous T.: A de Sitter Hoedown. JHEP 08, 131 (2010) [arXiv:1002.1717]MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    Anninos, D., de Buyl, S., Detournay, S.: Holography For a De Sitter-Esque Geometry [arXiv:1102.3178]Google Scholar
  19. 19.
    Harlow, D., Stanford, D.: Operator dictionaries and wave functions in AdS/CFT and dS/CFT [arXiv:1104.2621]Google Scholar
  20. 20.
    Witten, E.: Quantum gravity in de Sitter space [hep-th/0106109]Google Scholar
  21. 21.
    Strominger A.: The dS/CFT correspondence. JHEP 10, 034 (2001) [hep-th/0106113]MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    Nachtmann O.: Dynamishe Stabilität im de-Sitter-Raum, Sitz. Ber. Ösk. Ak. d. Wiss. II 176, 363 (1968)Google Scholar
  23. 23.
    Myhrvold N.P.: Runaway particle production in de Sitter space. Phys. Rev. D28, 2439 (1983)MathSciNetADSGoogle Scholar
  24. 24.
    Hu B.L., O’Connor D.J.: Infrared behavior and finite size effects in inflationary cosmology. Phys. Rev. Lett. 56, 1613–1616 (1986)ADSCrossRefGoogle Scholar
  25. 25.
    Hu B.L., O’Connor D.J.: Symmetry behavior in curved space-time: finite size effect and dimensional reduction. Phys. Rev. D36, 1701 (1987)MathSciNetADSGoogle Scholar
  26. 26.
    Boyanovsky D., Holman R., Prem Kumar S.: Inflaton decay in De Sitter spacetime. Phys. Rev. D56, 1958–1972 (1997) [hep-ph/9606208]ADSGoogle Scholar
  27. 27.
    Bros J., Epstein H., Moschella U.: Lifetime of a massive particle in a de Sitter universe. JCAP 0802, 003 (2008) [hep-th/0612184]ADSGoogle Scholar
  28. 28.
    Polyakov A.M.: De Sitter space and eternity. Nucl. Phys. B797(1–2), 199–217 (2008) [arXiv:0709.2899]MathSciNetADSGoogle Scholar
  29. 29.
    Akhmedov E.T., Buividovich P.V.: Interacting field theories in de Sitter space are non-Unitary. Phys. Rev. D78, 104005 (2008) [arXiv:0808.4106]MathSciNetADSGoogle Scholar
  30. 30.
    Higuchi A.: Tree-level vacuum instability in an interacting field theory in de Sitter spacetime. Class. Quant. Gravit. 26, 072001 (2009) [arXiv:0809.1255]MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    Higuchi A.: Decay of the free-theory vacuum of scalar field theory in de Sitter spacetime in the interaction picture. Class. Quant. Gravit. 26, 072001 (2009)MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    Higuchi A., Cheong L.Y.: A conformally coupled massive scalar field in the de sitter expanding universe with the mass term treated as a perturbation. Class. Quantum Gravit. 26(13), 135019 (2009) [arXiv:0903.3881]MathSciNetADSCrossRefGoogle Scholar
  33. 33.
    Akhmedov E.T.: Real or imaginary? (On pair creation in de Sitter space). Mod. Phys. Lett. A 25(33), 2815–2823 (2009) [arXiv:0909.3722]MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    Polyakov A.M.: Decay of vacuum energy. Nucl. Phys. B834, 316–329 (2010) [arXiv:0912.5503]MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    Burgess C.P., Holman R., Leblond L., Shandera S.: Breakdown of semiclassical methods in de Sitter space. J. Cosmol. Astropart. Phys. 2010(10), 017 (2010) [arXiv:1005.3551]MathSciNetADSCrossRefGoogle Scholar
  36. 36.
    Marolf, D., Morrison, I.A.: The IR stability of de Sitter: loop corrections to scalar propagators. Phys. Rev. D 82, 105032 (Nov, 2010) [arXiv:1006.0035]Google Scholar
  37. 37.
    Rajaraman A., Kumar J., Leblond L.: Constructing infrared finite propagators in inflating space-time. Phys. Rev. D82, 023525 (2010) [arXiv:1002.4214]ADSGoogle Scholar
  38. 38.
    Youssef, A.: Infrared behavior and gauge artifacts in de Sitter spacetime. I. The photon field [arXiv:1011.3755]Google Scholar
  39. 39.
    Boyanovsky, D., Holman, R.: On the perturbative stability of quantum field theories in de Sitter space [arXiv:1103.4648]Google Scholar
  40. 40.
    Hollands, S.: Correlators, Feynman diagrams, and quantum no-hair in de Sitter spacetime [arXiv:1010.5367]Google Scholar
  41. 41.
    Marolf, D., Morrison, I.A.: The IR stability of de Sitter QFT: results at all orders. Phys. Rev. D. (Submitted, 2010) [arXiv:1010.5327]Google Scholar
  42. 42.
    Krotov, D., Polyakov, A.M.: Infrared sensitivity of unstable vacua. Nucl. Phys. B (In press, 2011) [arXiv:1012.2107]Google Scholar
  43. 43.
    Hartle J.B., Hawking S.W.: Path-integral derivation of black hole radiance. Phys. Rev. D13, 2188–2203 (1976)ADSGoogle Scholar
  44. 44.
    Strohmaier A., Verch R., Wollenberg M.: Microlocal analysis of quantum fields on curved space–times: analytic wave front sets and reeh–schlieder theorems. J. Math. Phys. 43(11), 5514–5530 (2002)MathSciNetADSMATHCrossRefGoogle Scholar
  45. 45.
    Shlaer, B.: Stability in and of de Sitter space [arXiv:0911.3142]Google Scholar
  46. 46.
    Allen B., Jacobson T.: Vector two point functions in maximally symmetric spaces. Commun. Math. Phys. 103, 669 (1986)MathSciNetADSMATHCrossRefGoogle Scholar
  47. 47.
    Tsamis N.C., Woodard R.P.: A maximally symmetric vector propagator. J. Math. Phys. 48, 052306 (2007) [gr-qc/0608069]MathSciNetADSCrossRefGoogle Scholar
  48. 48.
    Tsamis N.C., Woodard R.P.: Relaxing the cosmological constant. Phys. Lett. B301, 351–357 (1993)ADSGoogle Scholar
  49. 49.
    Tsamis N.C., Woodard R.P.: Strong infrared effects in quantum gravity. Ann. Phys. 238, 1–82 (1995)MathSciNetADSCrossRefGoogle Scholar
  50. 50.
    Mottola E., Vaulin R.: Macroscopic effects of the quantum trace anomaly. Phys. Rev D74, 064004 (2006) [gr-qc/0604051]ADSGoogle Scholar
  51. 51.
    Antoniadis I., Mazur P.O., Mottola E.: Cosmological dark energy: prospects for a dynamical theory. New J. Phys. 9, 11 (2007) [gr-qc/0612068]MathSciNetADSCrossRefGoogle Scholar
  52. 52.
    Garriga J., Tanaka T.: Can infrared gravitons screen Λ?. Phys. Rev. D77, 024021 (2008) [arXiv:0706.0295]ADSGoogle Scholar
  53. 53.
    Tsamis N.C., Woodard R.P.: Reply to ‘Can infrared gravitons screen Λ?’. Phys. Rev. D78, 028501 (2008) [arXiv:0708.2004]MathSciNetADSGoogle Scholar
  54. 54.
    Urakawa Y., Tanaka T.: Infrared divergence does not affect the gauge-invariant curvature perturbation. Phys. Rev. D82, 121301 (2010)ADSGoogle Scholar
  55. 55.
    Tsamis, N.C., Woodard, R.P.: A gravitational mechanism for cosmological screening [arXiv:1103.5134]Google Scholar
  56. 56.
    Allen B.: Vacuum states in de Sitter space. Phys. Rev. D32, 3136 (1985)ADSGoogle Scholar
  57. 57.
    Birrell N.D., Davies P.C.W.: Quantum Fields in Curved Space, pp. 340. Cambridge University Press, Cambridge (1982)MATHGoogle Scholar
  58. 58.
    Marolf D., Morrison I.A.: Group averaging for de Sitter free fields. Class. Quant. Gravit. 26(23), 235003 (2009) [arXiv:0810.5163]MathSciNetADSCrossRefGoogle Scholar
  59. 59.
    Higuchi, A., Marolf, D., Morrison, I.A.: On the equivalence between euclidean and In-In formalisms in de Sitter QFT. Phys. Rev. D. 83, 084029 (Apr, 2011) [arXiv:1012.3415]Google Scholar
  60. 60.
    Schwinger J.S.: Brownian motion of a quantum oscillator. J. Math. Phys. 2, 407–432 (1961)MathSciNetADSMATHCrossRefGoogle Scholar
  61. 61.
    Keldysh L.V.: Diagram technique for nonequilibrium processes. Zh. Eksp. Teor. Fiz. 47, 1515–1527 (1964)Google Scholar
  62. 62.
    Jordan R.D.: Effective field equations for expectation values. Phys. Rev. D33, 444–454 (1986)ADSGoogle Scholar
  63. 63.
    Paz J.P.: Anisotropy dissipation in the early universe: finite temperature effects reexamined. Phys. Rev. D41, 1054–1066 (1990)ADSGoogle Scholar
  64. 64.
    Vilkovisky G.A.: Expectation values and vacuum currents of quantum fields. Lect. Notes Phys. 737, 729–784 (2008) [arXiv:0712.3379]MathSciNetADSCrossRefGoogle Scholar
  65. 65.
    Sasaki M., Suzuki H., Yamamoto K., Yokoyama J.: Superexpansionary divergence: breakdown of perturbative quantum field theory in space-time with accelerated expansion. Class. Quant. Grav. 10, L55–L60 (1993)MathSciNetADSCrossRefGoogle Scholar
  66. 66.
    Bogoliubov N., Shirkov D.: Introduction to the Theory of Quantized Fields. Wiley, New York (1980)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations