Advertisement

General Relativity and Gravitation

, Volume 43, Issue 10, pp 2555–2560 | Cite as

The value of the cosmological constant

  • John D. BarrowEmail author
  • Douglas J. Shaw
Essay Awarded by the Gravity Research Foundation

Abstract

We make the cosmological constant, Λ, into a field and restrict the variations of the action with respect to it by causality. This creates an additional Einstein constraint equation. It restricts the solutions of the standard Einstein equations and is the requirement that the cosmological wave function possess a classical limit. When applied to the Friedmann metric it requires that the cosmological constant measured today, t U , be \({\Lambda \sim t_{U}^{-2} \sim 10^{-122}}\) , as observed. This is the classical value of Λ that dominates the wave function of the universe. Our new field equation determines Λ in terms of other astronomically measurable quantities. Specifically, it predicts that the spatial curvature parameter of the universe is \({\Omega _{\mathrm{k0}} \equiv -k/a_{0}^{2}H^{2}=-0.0055}\) , which will be tested by Planck Satellite data. Our theory also creates a new picture of self-consistent quantum cosmological history.

Keywords

Cosmology Cosmological constant Dark energy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lemaître G.: Proc. Nat. Acad. Sci. 20, 12 (1934)ADSCrossRefGoogle Scholar
  2. 2.
    Zeldovich Y.B.: JETP Lett. 6, 316 (1967)ADSGoogle Scholar
  3. 3.
    Weinberg S.: Rev. Mod. Phys. 61, 1 (1989)MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 4.
    Bousso R.: Gen. Relativ. Gravit. 40, 607 (2008)MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 5.
    Riess A.G., et al.: Supernova search team collaboration. Astron. J. 116, 1009 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    Perlmutter S., et al.: Supernova cosmology project collaboration. Astrophys. J. 517, 565 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    Barrow J.D., Tipler F.J.: The Anthropic Cosmological Principle, chap. 6.9. Oxford UP, Oxford (1986)Google Scholar
  8. 8.
    Weinberg S.: Phys. Rev. Lett 59, 2607 (1987)ADSCrossRefGoogle Scholar
  9. 9.
    Efstathiou G.: Mon. Not. R. astron. Soc. 274, L73 (1995)ADSGoogle Scholar
  10. 10.
    Garriga J., Vilenkin A.: Phys. Rev. D 77, 043526 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    Bousso R., Freivogel B., Leichenauer S., Rosenhaus V.: Phys. Rev.D 83, 023525 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Shaw D.J., Barrow J.D.: Phys. Rev. D 83, 04351 (2010)Google Scholar
  13. 13.
    Komatsu, E. et al.: arXiv:1001.4538Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.DAMTP, Centre for Mathematical SciencesCambridge UniversityCambridgeUK

Personalised recommendations