Advertisement

General Relativity and Gravitation

, Volume 43, Issue 8, pp 2141–2155 | Cite as

Collapse of non-spherically symmetric scalar field distributions

  • Koyel Ganguly
  • Narayan BanerjeeEmail author
Research Article

Abstract

In the present work the collapse scenario of some exact non-spherical models with a minimally coupled scalar field is studied. Scalar field collapse with planar as well as toroidal, cylindrical and pseudoplanar symmetries have been investigated. It is shown that the scalar field may have collapsing modes even if it has the equation of state corresponding to that of a dark energy.

Keywords

Gravitational collapse Scalar fields 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Joshi P.: Global Aspects in Gravitation and Cosmology. Clarendon Press, Oxford (1993)zbMATHGoogle Scholar
  2. 2.
    Christodoulou D.: Ann. Math. 140, 607 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Goswami R., Joshi P.S.: Phys. Rev. D. 65, 027502 (2004) [arxiv:gr-qc/0410144]ADSCrossRefGoogle Scholar
  4. 4.
    Giambo R.: Class. Quant. Grav. 22, 2295 (2005)MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 5.
    Choptuik M.W.: Phys. Rev. Lett. 70, 9 (1993)ADSCrossRefGoogle Scholar
  6. 6.
    Brady P.R.: Class. Quant. Grav. 11, 1255 (1995)MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Gundlach C.: Phys. Rev. Lett. 75, 3214 (1995)MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. 8.
    Gundlach, C.: Critical phenomena in gravitational collapse: Living reviews. Living Rev. Rel. 2, 4 (1999). gr-qc/0001046 (2000)Google Scholar
  9. 9.
    Wang A.: Critical phenomena in gravitational collapse: The studies so far. Braz. J. Phys. 31, 188 (2001) [arxiv:gr-qc/0104073]CrossRefGoogle Scholar
  10. 10.
    Miller J.C., Sciama D.W.: Gravitational collapse to black hole state. In: Held, A. (eds) General Relativity and Gravitation. One Hundred Years After the Birth of Albert Einstein, Plenum Press, New York (1979)Google Scholar
  11. 11.
    Bronnikov K.A., Kovalchuk M.A.: Gen. Relativ. Gravit. 15, 809 (1983)MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Bronnikov K.A.: Gen. Relativ. Gravit. 15, 823 (1983)MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Bronnikov K.A., Kovalchuk M.A.: Gen. Relativ. Gravit. 16, 15 (1984)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Padmanabhan T.: Phys. Rep. 380, 235 (2003)MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. 15.
    Sahni V., Starobinsky A.: Int. J. Mod. Phys. D 9, 373 (2000)ADSGoogle Scholar
  16. 16.
    Copeland, E.J., Sami, M., Tsujikawa, S.: hep-th/0603057Google Scholar
  17. 17.
    Carroll S.M.: Carnegie observatories astrophysics series, vol. 2. In: Freeman, W.L. (eds) Measuring and Modelling the Universe, Cambridge University Press, Cambridge (2003)Google Scholar
  18. 18.
    Peebles P.J.E., Ratra B.: Rev. Mod. Phys. 75, 559 (2003) [arXiv:astro-ph/0207347]MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Relativity and Cosmology Research Centre, Department of PhysicsJadavpur UniversityKolkataIndia
  2. 2.IISER—KolkataMohanpurIndia

Personalised recommendations