General Relativity and Gravitation

, Volume 43, Issue 7, pp 2037–2051 | Cite as

Atom interferometers for gravitational wave detection: a look at a “simple” configuration

Research Article

Abstract

A symmetric Ramsey-Bordé (Mach-Zehnder geometry) atom interferometer is studied as gravitational wave detector under the hypothesis of shot noise limited sensitivity. Full gauge-invariant response function is deduced via ABCD matrices approach and the resulting sensitivity is analyzed in the frequency domain. As an example, a possible use in a specific frequency range is studied in some detail.

Keywords

Gravitational waves detection Atom interferometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bordé Ch.J.: Phys. Lett. A 140, 10 (1989)ADSCrossRefGoogle Scholar
  2. 2.
    Keith D.W. et al.: Phys. Rev. Lett. 66, 2693 (1991)ADSCrossRefGoogle Scholar
  3. 3.
    Riehle F. et al.: Phys. Rev. Lett. 67, 177 (1991)ADSCrossRefGoogle Scholar
  4. 4.
    Kasevich M., Chu S.: Phys. Rev. Lett. 67, 181 (1991)ADSCrossRefGoogle Scholar
  5. 5.
    Berman, P. (ed.): Atom Interferometry. Academic Press, NY (1997)Google Scholar
  6. 6.
    Chu, S.: Coherent Atomic Matter Waves. In: Kaiser, R., Westbrook, C., David, F. (eds.) LXXIII Les Houches Session, Springer, NY (2001)Google Scholar
  7. 7.
    Peters A., Chung K.Y., Chu S.: Metrologia 38, 25 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    Bordé C.J.: Metrologia 39, 435 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    2004 Aspen Winter Conference on GW and their Detection. http://www.ligo.caltech.edu/LIGOweb/Aspen2004/pdf/vetrano.pdf
  10. 10.
    Chiao R.Y., Speliotopoulos A.D.: J. Mod. Opt. 51, 861 (2004)ADSMATHGoogle Scholar
  11. 11.
    Bordé C.J.: Gen. Relativ. Gravit. 36, 475 (2004)ADSMATHCrossRefGoogle Scholar
  12. 12.
    Roura A., Brill D.R., Hu B.L., Misner C.W., Phillips W.D.: Phys. Rev. D 73, 084018 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    Delva P., Angonin M.C., Tourrenc P.: Phys. Lett. A 357, 249 (2006)ADSMATHCrossRefGoogle Scholar
  14. 14.
    Tino G.M., Vetrano F.: Class. Quantum Gravity 24, 2167 (2007)ADSMATHCrossRefGoogle Scholar
  15. 15.
    Dimopoulos S., Graham P.W., Hogan J.M., Kasevich M.A., Rajendran S.: Phys. Rev. D 78, 122002 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    Full scientific description at the e-address http://www.virgo.infn.it
  17. 17.
    Full scientific description at the e-address http://www.ligo.caltech.edu
  18. 18.
    Full scientific description at the e-address http://lisa.jpl.nasa.gov
  19. 19.
    Saulson P.R.: Fundamental of Interferometric GW Detectors. World Sc., Singapore (1994)CrossRefGoogle Scholar
  20. 20.
    Maggiore M.: Gravitational Waves, vol. 1. Oxford University Press, Oxford (2008)Google Scholar
  21. 21.
    Rakhmanov M.: Phys. Rev. D 71, 084003 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    For a review, see the special issue in Class. Quantum Grav. 21, 501 (2004)Google Scholar
  23. 23.
    Sathyaprakash B.S., Schutz B.F.: Living Reviews in Relativity 12, 2 (2009)ADSGoogle Scholar
  24. 24.
    Riou J.F., Le Coq Y., Impens F., Guerin W., Bordé C.J., Aspect A., Bouyer P.: Phys. Rev. A 77, 033630 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    Bordé C.J.: Eur. Phys. J. (S.T) 163, 315 (2008)Google Scholar
  26. 26.
    Manasse F.K., Misner C.W.: J. Math. Phys. 4, 735 (1963)MathSciNetADSMATHCrossRefGoogle Scholar
  27. 27.
    Fortini P.L., Gualdi C.: Nuovo Cimento B 71, 37 (1982)ADSCrossRefGoogle Scholar
  28. 28.
    Flores G., Orlandini M.: Nuovo Cimento B 91, 236 (1986)MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    Faraoni V.: Nuovo Cimento B 107, 631 (1992)ADSCrossRefGoogle Scholar
  30. 30.
    Beskaran D., Grishchuc L.P.: Class. Quantum Gravity 21, 404 (2004)Google Scholar
  31. 31.
    Misner C.W., Thorne K.S., Wheeler A.: Gravitation. Freeman, S. Francisco (1973)Google Scholar
  32. 32.
    Farmer A.J., Phinney E.S.: Mon. Not. R. Astron. Soc. 346, 1197 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    Graber J.: Int. J. Mod. Phys. D 16, 2319 (2007)MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    Scoles, G. (ed.): Atomic and Molecular Beam Methods. Oxford University Press, NY (1988)Google Scholar
  35. 35.
    Keith D.E., Ekstrom C.R., Turchette Q.A., Pritchard D.E.: Phys. Rev. Lett. 66, 2693 (1991)ADSCrossRefGoogle Scholar
  36. 36.
    Müller H., Chiow S., Long Q., Hermann S., Chu S.: Phys. Rev. Lett. 100, 180405 (2008)CrossRefGoogle Scholar
  37. 37.
    Müller H., Chiow S., Hermann S., Chu S.: Phys. Rev. Lett. 102, 240403 (2009)CrossRefGoogle Scholar
  38. 38.
    Cheinet P., Canuel B., Pereira Dos Santos F., Gauguet A., Yver-Leduc F., Landragin A.: IEEE Trans. Instr. Meas. 57, 1141 (2008)CrossRefGoogle Scholar
  39. 39.
    Bordé C.J., Sharma J., Tourrenc P., Damour T.: J. Physique Lett. 44, L983 (1983)CrossRefGoogle Scholar
  40. 40.
    Dimopoulos S., Graham P.W., Hogan J.M., Kasevich M.A.: Phys. Rev. D 78, 042003 (2008)ADSCrossRefGoogle Scholar
  41. 41.
    Dimopoulos S., Graham P.W., Hogan J.M., Kasevich M.A.: Phys. Lett. B 678, 37 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Dipartimento di Fisica e Astronomia and LENSUniversità di Firenze, INFN Sezione di FirenzeSesto FiorentinoItaly
  2. 2.Dipartimento di Matematica, Fisica e InformaticaUniversità di Urbino “Carlo Bo”UrbinoItaly
  3. 3.INFN Sezione di FirenzeSesto FiorentinoItaly

Personalised recommendations