General Relativity and Gravitation

, Volume 43, Issue 5, pp 1205–1210 | Cite as

Universal properties of distorted Kerr–Newman black holes

Review Article

Abstract

We discuss universal properties of axisymmetric and stationary configurations consisting of a central black hole and surrounding matter in Einstein–Maxwell theory. In particular, we find that certain physical equations and inequalities (involving angular momentum, electric charge and horizon area) are not restricted to the Kerr–Newman solution but can be generalized to the situation where the black hole is distorted by an arbitrary axisymmetric and stationary surrounding matter distribution.

Keywords

Black holes Einstein–Maxwell spacetimes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdolrahimi S., Frolov V.P., Shoom A.A.: Interior of a charged distorted black hole. Phys. Rev. D 80, 024011 (2009)CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Ansorg M., Pfister H.: A universal constraint between charge and rotation rate for degenerate black holes surrounded by matter. Class. Quantum Grav. 25, 035009 (2008)CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Ansorg M., Hennig J.: The inner Cauchy horizon of axisymmetric and stationary black holes with surrounding matter. Class. Quantum Grav. 25, 222001 (2008)CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Ansorg M., Hennig J.: The inner Cauchy horizon of axisymmetric and stationary black holes with surrounding matter in Einstein–Maxwell theory. Phys. Rev. Lett. 102, 221102 (2009)CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Booth I., Fairhurst S.: Extremality conditions for isolated and dynamical horizons. Phys. Rev. D 77, 084005 (2008)CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Christodoulou D., Ruffini R.: Reversible transformations of a charged black hole. Phys. Rev. D 4, 3552 (1971)CrossRefADSGoogle Scholar
  7. 7.
    Chruściel P.T.: On space-times with U(1) × U(1) symmetric compact Cauchy surfaces. Ann. Phys. 202, 100 (1990)CrossRefMATHADSGoogle Scholar
  8. 8.
    Hennig J., Ansorg M., Cederbaum C.: A universal inequality between the angular momentum and horizon area for axisymmetric and stationary black holes with surrounding matter. Class. Quantum Grav. 25, 162002 (2008)CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Hennig J., Ansorg M.: The inner Cauchy horizon of axisymmetric and stationary black holes with surrounding matter in Einstein–Maxwell theory: study in terms of soliton methods. Ann. Henri Poincaré 10, 1075 (2009)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Hennig J., Cederbaum C., Ansorg M.: A universal inequality for axisymmetric and stationary black holes with surrounding matter in the Einstein–Maxwell theory. Commun. Math. Phys. 293, 449 (2010)CrossRefMATHADSMathSciNetGoogle Scholar
  11. 11.
    Hennig J., Ansorg M.: Regularity of Cauchy horizons in S 2 × S 1 Gowdy spacetimes. Class. Quantum Grav. 27, 065010 (2010)CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Neugebauer G., Kramer D.: Einstein–Maxwell solitons. J. Phys. A: Math. Gen. 16, 1927 (1983)CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Neugebauer, G.: Gravitostatics and rotating bodies. In: Hall, G.S., Pulham, J.R. (eds.) Proceedings 46th Scottish Universities Summer School in Physics (Aberdeen). Institute of Physics Publishing, London (1996)Google Scholar
  14. 14.
    Neugebauer G., Hennig J.: Non-existence of stationary two-black-hole configurations. Gen. Relativ. Gravit. 41, 2113 (2009)CrossRefMATHADSMathSciNetGoogle Scholar
  15. 15.
    Penrose R.: Structure of space-time. In: de Witt, C.M., Wheeler, J.A. (eds) Battelle Rencontres, W.A. Benjamin, New York (1968)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Theoretisch-Physikalisches InstitutFriedrich-Schiller-Universität JenaJenaGermany
  2. 2.Max Planck Institute for Gravitational PhysicsGolmGermany

Personalised recommendations