Advertisement

General Relativity and Gravitation

, Volume 43, Issue 1, pp 331–336 | Cite as

Editorial note to: Jerome Kristian and Rainer K. Sachs, Observations in cosmology

  • George Ellis
Golden Oldie Editorial

Keywords

Anisotropic inhomogeneous cosmological models Cosmological effects Golden Oldie 

References

  1. 1.
    Biswas, T., Notari, A., Valkenburg, W.: Testing the void against cosmological data: fitting CMB, BAO, SN and H0 (2010). arXiv:1007.3065v1Google Scholar
  2. 2.
    Bolejko K., Krasiński A., Célérier M.N., Hellaby C.: Structures in the Universe by exact methods: formation, evolution, interactions. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  3. 3.
    Bondi, H.: Spherically symmetrical models in general relativity. Mon. Not. R. Astron. Soc. 107, 410 (1947); reprinted, with historical comments, in Gen. Relativ. Gravit. 31, 1777 (1999)Google Scholar
  4. 4.
    Célérier M.-N.: Do we really see a cosmological constant in the supernovae data?. Astron. Astrophys 353, 63–71 (2000) arXiv:astro-ph/9907206v4Google Scholar
  5. 5.
    Clarkson, C., Regis, M.: The cosmic microwave background in an inhomogeneous universe (2010). arXiv:1007.3443v1Google Scholar
  6. 6.
    Ehlers, J.: Contributions to the relativistic mechanics of continuous media (in German), Akad Wiss und Lit (Mainz), Abh Mat-Nat Kl. Nr. 11, 792–837 (1961). English translation: Gen. Relativ. Gravit. 25, 1225–1266 (1993)Google Scholar
  7. 7.
    Ellis, G.F.R.: Relativistic cosmology. In: Sachs, R.K. (ed.) Proceedings of the International School of Physics “Enrico Fermi”, Course 47: General relativity and cosmology. Academic Press, pp. 104–182 (1971). Reprinted in Gen. Relativ. Gravit. 41, 581 (2009)Google Scholar
  8. 8.
    Ellis G.F.R., Nel S.D., Stoeger W., Maartens R., Whitman A.P.: Ideal observational cosmology. Phys Reports 124, 315–417 (1985)CrossRefMathSciNetADSGoogle Scholar
  9. 9.
    Etherington, I.M.H.: On the definition of distance in general relativity. Philosophical Magazine Nr. 18, 761 (1933). Reprinted in Gen. Relativ. Gravit. 39, 1055 (2007)Google Scholar
  10. 10.
    Hawking S.W.: Perturbations of an expanding uniuverse. Astrophys. J. 145, 544 (1966)CrossRefADSGoogle Scholar
  11. 11.
    Hellaby C., Alfedeel A.H.A.: Solving the observer metric. Phys. Rev. D 79, 043501 (2009) arXiv:0811.1676CrossRefADSGoogle Scholar
  12. 12.
    Lemaître, G.: L’Univers en expansion (The expanding Universe). Ann. Soc. Sci. Bruxelles A53, 51 (1933); English translation, with historical comments: Gen. Relativ. Gravit. 29, 637 (1997)Google Scholar
  13. 13.
    Lu T.H.-C., Hellaby C.: Obtaining the spacetime metric from cosmological observations. Class. Quantum Gravit. 24, 4107–4131 (2007) arXiv:0705.1060zbMATHCrossRefMathSciNetADSGoogle Scholar
  14. 14.
    McClure M.L., Hellaby C.: Determining the metric of the cosmos: stability, accuracy, and consistency. Phys. Rev. D 78, 044005 (2008) arXiv:0709.0875CrossRefADSGoogle Scholar
  15. 15.
    McCrea, W.H.: Observable relations in relativistic cosmology. II. Zeitschrift für Astrophysik 18, 98 (1939). Reprinted in Gen. Relativ. Gravit. 30, 312 (1998)Google Scholar
  16. 16.
    Moss, A., Zibin, J.P., Scott, D.: Precision cosmology defeats void models for acceleration. (2010). arXiv:1007.3725v1Google Scholar
  17. 17.
    Mustapha N., Hellaby C., Ellis G.F.R.: Large scale inhomogeneity versus source evolution–can we distinguish them observationally?. Mon. Not. R. Astron. Soc. 292, 817–830 (1997) arXiv: gr-qc/9808079ADSGoogle Scholar
  18. 18.
    Tolman, R.C.: Effect of inhomogeneity on cosmological models. Proc. Nat. Acad. Sci. USA 20, 169 (1934); reprinted, with historical comments: Gen. Relativ. Gravit. 29, 931 (1997)Google Scholar
  19. 19.
    York, D.G., et al. (The SDSS collaboration): The Sloan Digital Sky Survey: technical summary. Astron. J. 120:1579–1587 (2000). arXiv:astro-ph/0006396Google Scholar
  20. 20.
    Munch G.: Bull. Am. Astron. Soc. 29, 1476 (1997)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Mathematics DepartmentUniversity of Cape TownCape TownSouth Africa

Personalised recommendations