General Relativity and Gravitation

, Volume 42, Issue 10, pp 2323–2329 | Cite as

Building up spacetime with quantum entanglement

  • Mark Van RaamsdonkEmail author
Essay Awarded by the Gravity Research Foundation


In this essay, we argue that the emergence of classically connected spacetimes is intimately related to the quantum entanglement of degrees of freedom in a non-perturbative description of quantum gravity. Disentangling the degrees of freedom associated with two regions of spacetime results in these regions pulling apart and pinching off from each other in a way that can be quantified by standard measures of entanglement.


AdS/CFT Emergent spacetime Quantum entanglement 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Banks T., Fischler W., Shenker S.H., Susskind L.: M theory as a matrix model: a conjecture. Phys. Rev. D 55, 5112 (1997) [arXiv:hep-th/9610043]CrossRefMathSciNetADSGoogle Scholar
  2. 2.
    Maldacena J.M.: The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys. 38, 1113 (1999)] [arXiv:hep-th/9711200]zbMATHMathSciNetADSGoogle Scholar
  3. 3.
    Aharony O., Gubser S.S., Maldacena J.M., Ooguri H., Oz Y.: Large N field theories, string theory and gravity. Phys. Rep. 323, 183 (2000) [arXiv:hep-th/9905111]CrossRefMathSciNetADSGoogle Scholar
  4. 4.
    Maldacena J.M.: Eternal black holes in Anti-de-Sitter. JHEP 0304, 021 (2003) [arXiv:hep-th/ 0106112]CrossRefMathSciNetADSGoogle Scholar
  5. 5.
    Horowitz G.T., Marolf D.: A new approach to string cosmology. JHEP 9807, 014 (1998) [arXiv:hep-th/9805207]CrossRefMathSciNetADSGoogle Scholar
  6. 6.
    Balasubramanian V., Kraus P., Lawrence A.E., Trivedi S.P.: Holographic probes of anti-de Sitter space-times. Phys. Rev. D 59, 104021 (1999) [arXiv:hep-th/9808017]CrossRefMathSciNetADSGoogle Scholar
  7. 7.
    Witten E.: Anti-de Sitter space, thermal phase transition, and confinement in gauge theories. Adv. Theor. Math. Phys. 2, 505 (1998) [arXiv:hep-th/9803131]zbMATHMathSciNetGoogle Scholar
  8. 8.
    Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  9. 9.
    Ryu S., Takayanagi T.: Holographic derivation of entanglement entropy from AdS/CFT. Phys. Rev. Lett. 96, 181602 (2006) [arXiv:hep-th/0603001]CrossRefMathSciNetADSGoogle Scholar
  10. 10.
    Wolf M.M., Verstraete F., Hastings M.B., Cirac J.I.: Area laws in quantum systems: mutual information and correlations. Phys. Rev. Lett. 100, 070502 (2008) [arXiv:0704.3906[quant-phCrossRefMathSciNetADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of British ColumbiaVancouverCanada

Personalised recommendations