General Relativity and Gravitation

, Volume 43, Issue 2, pp 569–592 | Cite as

Lasers and optics: looking towards third generation gravitational wave detectors

  • Nergis Mavalvala
  • David E. McClelland
  • Guido MuellerEmail author
  • D. H. Reitze
  • Roman Schnabel
  • Benno Willke
Open Access
Research Article


Third generation terrestrial interferometric gravitational wave detectors will likely require significant advances in laser and optical technologies to reduce two of the main limiting noise sources: thermal noise due to mirror coatings and quantum noise arising from a combination of shot noise and radiation pressure noise. Increases in laser power and possible changes of the operational wavelength require new high power laser sources and new electro-optic modulators and Faraday isolators. Squeezed light can be used to further reduce the quantum noise while nano-structured optical components can be used to reduce or eliminate mirror coating thermal noise as well as to implement all-reflective interferometer configurations to avoid thermal effects in mirror substrates. This paper is intended to give an overview on the current state-of-the-art and future trends in these areas of ongoing research and development.


Gravitational wave detection Laser interferometry 



The authors would like to thank Vincent Fratello for useful discussions concerning materials for long and short wavelength Faraday isolators. G.M and D.H.R gratefully acknowledge the support of the National Science Foundation (PHY0555453, PHY0757968, and PHY0653582) and R.S. and B.W. the support of the Deutsche Forschungsgemeinschaft (SFB 407, SFB TR7 and QUEST).

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.


  1. 1.
    Abbott, R., Adhikari, R., Ballmer, S., Barsotti, L., Evans, M., Fritschel, P., Frolov, V., Mueller, G., Slagmolen, B., Waldman, S.: LIGO-T070247-01-1: AdvLIGO Interferometer Sensing and Control Conceptual Design, Ligo Document Center, (2007)
  2. 2.
    Conforto G., DeSalvo R.: Proposal for lower frequency companions for the advanced LIGO Gravitational Wave Interferometric Detectors. Nuc. Instr. Meth. Phys. Res. A 518, 228 (2004)CrossRefADSGoogle Scholar
  3. 3.
    Caves C.M.: Phys. Rev. D 23, 1693 (1981)CrossRefADSGoogle Scholar
  4. 4.
    Meers B.J.: Recycling in laser-interferometric gravitational-wave detectors. Phys. Rev. D 38, 2317 (1988)CrossRefADSGoogle Scholar
  5. 5.
    Rowan, S., et al.: Challenges in thermal noise. Gen. Relativ. Gravit. (this issue) (2010)Google Scholar
  6. 6.
    Mitigating noise in the 1–10 Hz band, in this issueGoogle Scholar
  7. 7.
    Willke B., Danzmann K., Frede M., King P., Kracht D., Kwee P., Puncken O., Savage J.R.L., Schulz B., Seifert F., Veltkamp C., Wagner S., Wessels P., Winkelmann L.: Stabilized lasers for advanced gravitational wave detectors. Class. Quantum Gravit. 25, 114040 (2008)CrossRefADSGoogle Scholar
  8. 8.
    Frede M., Wilhelm R., Kracht D., Fallnich C.: Nd:YAG ring laser with 213 W linearly polarized fundamental mode output power. Opt. Express 13, 7516 (2005)CrossRefADSGoogle Scholar
  9. 9.
    Kwee P., Willke B., Danzmann K.: Shot noise limited laser power stabilization with a high power photodiode array. Opt. Lett. 34(19), 2912 (2009)CrossRefADSGoogle Scholar
  10. 10.
    Sun K.-X., Fejer M.M., Gustafson E., Byer R.L.: Sagnac interferometer for gravitational-wave detection. Phys. Rev. Lett. 76, 3053 (1996)CrossRefADSGoogle Scholar
  11. 11.
    Chelkowski, et al.: Prospects of higher-order Laguerre-Gauss modes in future gravitational wave detectors. Phys. Rev. D 79, 122002 (2009)CrossRefADSGoogle Scholar
  12. 12.
    Kane T., Eckardt R., Byer R.: Reduced thermal focusing and birefringence in zig-zag slab geometry crystalline lasers. IEEE J. Quantum Electron. 19, 1351 (1983)CrossRefADSGoogle Scholar
  13. 13.
    Tulloch, W.M., Rutherford, T.S., Gustafson, E.K., Byer, R.L.: CW high-power conduction-cooled edge-pumped slab laser, Solid State Lasers VIII 3613, ed. Richard Scheps, SPIE 2 (1999)Google Scholar
  14. 14.
    Rutherford T.S., Tulloch W.M., Sinha S., Byer R.L.: Yb:YAG and Nd:YAG edge-pumped slab lasers. Opt. Lett. 26, 986 (2001)CrossRefADSGoogle Scholar
  15. 15.
    Bedö S., Lüthy W., Weber H.P.: The effective absorption coefficient in double-clad fibres. Opt. Commun. 99, 331 (1993)CrossRefADSGoogle Scholar
  16. 16.
    Limpert J., Roser F., Klingebiel S., Schreiber T., Wirth C., Peschel T., Eberhardt R., Tünnermann A.: The rising power of fiber lasers and amplifiers, Selected Topics in Quantum Electronics. IEEE J. 13, 537 (2007)Google Scholar
  17. 17.
    Jeong Y., Sahu J., Payne D., Nilsson J.: Ytterbium-doped large-core fiber laser with 1.36 kw continuous-wave output power. Opt. Express 12, 6088 (2004)CrossRefADSGoogle Scholar
  18. 18.
    Hildebrandt M., Frede M., Kwee P., Willke B., Kracht D.: Single-frequency master-oscillator photonic crystal fiber amplifier with 148 W output power. Opt. Express 14, 11071 (2006)CrossRefADSGoogle Scholar
  19. 19.
    Green M., Keevers M.: Optical properties of intrinsic Silicon @ 300K. Prog. Photovoltaic Res. Appl. 3, 189 (1995)CrossRefGoogle Scholar
  20. 20.
  21. 21.
    Tovstonog S.V., Kurimura S., Suzuki I., Takeno K., Moriwaki S., Ohmae N., Mio N., Katagai T.: Thermal effects in high-power cw second harmonic generation in Mg-doped stoichiometric lithium tantalate. Opt. Express 16, 11294 (2008)CrossRefADSGoogle Scholar
  22. 22.
    Samanta G.K., Kumar S.C., Ebrahim-Zadeh M.: Stable, 9.6 W, continuous-wave, single-frequency, fiber-based green source at 532 nm. Opt. Lett. 34, 1561 (2009)CrossRefADSGoogle Scholar
  23. 23.
    Schnabel R., Harms J., Strain K.A., Danzmann K.: Squeezed light for the interferometric detection of high-frequency gravitational waves. Class. Quantum Gravit. 21, S1045 (2004)CrossRefADSGoogle Scholar
  24. 24.
    Winkler W., Danzmann K., Rdiger A., Schilling R.: Heating by optical absorption and the performance of interferometric gravitational-wave detectors. Phys. Rev. A 44, 7022 (1991)CrossRefADSGoogle Scholar
  25. 25.
    Bass, M. (ed.): The Optical Society of America Handbook of Optics, vol. II. McGraw Hill, New York, 33.53 (1995);;; K. K. Wong Properties of lithium niobate, (IET, 2002) ISBN 0852967993
  26. 26.
    Dmitriev V.G., Gurzadyan G.G., Nikogosoyan D.N.: Handbook of Nonlinear Optical Crystals, Springer Series in Optical Sciences. Springer, Berlin (1999)Google Scholar
  27. 27.
  28. 28.
    Bryan D.A., Gerson R., Tomaschke H.E.: Increase optical damage resistance in lithium niobate. Appl. Phys. Lett. 44, 847 (1984)CrossRefADSGoogle Scholar
  29. 29.
    Kar S., Choubey R.K., Sen P., Bhagavannarayana G., Bartwal K.S.: Studies on codoping behavior of Nd:Mg:LiNbO3 crystals. Phys. B 393, 37 (2007) (and references)CrossRefADSGoogle Scholar
  30. 30.
  31. 31.
    Karlsson, H.: Fabrication of periodically poled crystals from the KTP family and their applications in nonlinear optics. Thesis, The Royal Institute of Technology, Stockholm (1999). TRITA-FYS 2197. ISSN: 0280-316XGoogle Scholar
  32. 32.
    Carvajal J.J., Segonds P., Pena A., Zaccaro J., Boulanger B., Diaz F., Aguilo M.: Structural and optical properties of RbTiOPO4:Nb crystals. J. Phys. Condensed Matter 19, 116214 (2007)CrossRefADSGoogle Scholar
  33. 33.
    See for example the KTP and MgO:LiNbO3 modulators from
  34. 34.
    Emanueli S., Arie A.: Temperature-dependent dispersion equations for KTiOPO4 and KTiOAsO4. Appl. Opt. 42, 6661 (2003)CrossRefADSGoogle Scholar
  35. 35.
    Bass, M. (ed.): The Optical Society of America Handbook of Optics, vol. II. McGraw Hill, New York (1995)Google Scholar
  36. 36.
  37. 37.
    Huang C.H., Shen H.Y., Zeng Z.D., Zhou Y.P., Zeng R.R., Yu G.F., Jiang A.D., Chen T.B.: Measurment of the total absorption coefficient of a KTP crystal. Opt. Laser Technol. 22, 345 (1990)CrossRefADSGoogle Scholar
  38. 38.
  39. 39.
    Oseledchik Y.S., Pisarevsky A.I., Prosvirnin A.L., Starshenko V.V., Svitanko N.V.: Nonlinear optical properties of the flux grown RbTiOPO4 crystal. Opt. Mater. 3, 237 (1994)CrossRefGoogle Scholar
  40. 40.
    Carvajal J.J., Sole R., Gavalda Jna., Massons J., Rico M., Zaldo C., Aguilo M., Diaz F.: Growth and characterisation of RbTiOPO4:Nd crystals as host for rare earth ions. J. Alloys Compounds 323–324, 231 (2001)CrossRefGoogle Scholar
  41. 41.
    Yutsis I., Kirshner B., Arie A.: Temperature-dependent dispersion relations for RbTiOPO4 and RbTiOAsO4. Appl. Phys. B 79, 77 (2004)CrossRefADSGoogle Scholar
  42. 42.
  43. 43.
    Mikami, T., Okamoto, T., Kato, K.: Sellmeier and themo-optic dispersion formulas for RbTiOPO4. Opt. Mater. doi: 10.1016/j.optmat.2009.03.12 (2009)
  44. 44.
    Wu, W.: Instrumentation of the next generation gravitational wave detector: triple pendulum suspension and electro-optic modulator. Thesis, University of Florida (2007)Google Scholar
  45. 45.
    Angert, Nahum, Raicol Crystals Ltd: Personal communication (2009)Google Scholar
  46. 46.
  47. 47.
  48. 48.
  49. 49.
  50. 50.
    Khazanov E., Andreev N., Babin A., Kiselev A., Palashov O., Reitze D.H.: Suppression of self-induced depolarization of high-power laser radiation in glass-based Faraday isolators. J. Opt. Soc. Am B. 17, 99 (2000)CrossRefADSGoogle Scholar
  51. 51.
    Khazanov E., Andreev N., Mal’shakov A., Palashov O., Poteomkin A., Sergeev A.M., Shaykin A., Zelenogorsky V., Ivanov I., Amin R., Mueller G., Tanner D.B., Reitze D.H.: Compensation of thermally induced modal distortions in Faraday isolators. IEEE J. Quantum Electron. 40, 1500 (2004)CrossRefADSGoogle Scholar
  52. 52.
    Mueller G., Amin R., Guagliardo D., McFeron Donavan, Lundock R., Reitze D.H., Tanner D.B.: Method for compensation of thermally-induced modal distortions in the input optics components of gravitational wave interferometers. Class. Quantum Gravit. 19, 1793 (2002)CrossRefADSGoogle Scholar
  53. 53.
    Tokita S., Kawanaka J., Fujita M., Kawashima T., Izawa Y.: Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers. Appl. Phys. B 80, 635 (2005)CrossRefADSGoogle Scholar
  54. 54.
    Mukhin I.B., Khazanov E.A.: Use of thin discs in Faraday isolators for high-average power lasers. Quantum Electron. 34, 973 (2004)CrossRefADSGoogle Scholar
  55. 55.
    Yasuhara R. III, Tokita S., Kawanaka J., Kawashima T., Kan H., Yagi H., Nozawa H., Yanagitani T., Fujimoto Y., Yoshida H., Nakatsuka M.: Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics. Opt. Express 15, 11255 (2007)CrossRefADSGoogle Scholar
  56. 56.
    Zheleznov D.S., Voitovich A.V., Mukhin I.B., Palashov O.V., Khazanov E.A.: Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K. Quantum Electron. 36, 383 (2006)CrossRefADSGoogle Scholar
  57. 57.
    Zheleznov D.S., Khazanov E.A., Mukhin I.B., Palashov O.V., Voytovich A.V.: Faraday isolators with short magnetooptical elements for average laser power up to 100 kW. IEEE J. Quantum Electron. 43, 451 (2007)CrossRefADSGoogle Scholar
  58. 58.
    Mukhin I., Voitovich A., Palashov O., Khazanov E.: 2.1 Tesla permanent-magnet Faraday isolator for subkilowatt average power lasers. Opt. Commun. 282, 1969 (2009)CrossRefADSGoogle Scholar
  59. 59.
  60. 60.
    Fratello, V.J., Wolfe, R.: In: Francombe M.H. (ed.) Handbook of Thin Film Devices Magnetic Thin Film Devices, vol. 4, p. 93. Academic Press, New York (2000)Google Scholar
  61. 61.
    Huang M., Xu Z.-C.: Wavelength and temperature characteristics of BiYbIG film/YIG crystal composite structure for magneto-optical applications. Appl. Phys. A 81, 193 (2005)CrossRefADSGoogle Scholar
  62. 62.
    Fratello, V.J.: Personal communication (2009)Google Scholar
  63. 63.
    Wolfe R., Dillon J.E., Liebeman R.A., Fratello V.J.: Broadband magneto-optic waveguide isolator. Appl. Phys. Lett. 57, 960 (1990)CrossRefADSGoogle Scholar
  64. 64.
    Honda Y., Ishikawa T., Hibiya T.: Advances in magneto-optics. J. Magn. Soc. Jpn. 11(Supplement S1), 361 (1987)Google Scholar
  65. 65.
    Tamaki T., Kaneda H., Tsushima K.: (GdBi)3(FeAR)5O12 based Faraday rotator operating at 1.3 μm. J. Mag. Soc. Jpn. 10, 137 (1986)CrossRefGoogle Scholar
  66. 66.
    Dexter J.L., Landry J., Cooper D.G., Reintjes J.: Ultraviolet optical isolators utilizing KDP-isomorphs. Opt. Commun. 80, 115 (1990)CrossRefADSGoogle Scholar
  67. 67.
    Pye L.D., Cherukuri S.C., Mansfield J., Loretz T.: The Faraday effect in some noncrystalline fluorides. J. Noncryst. Solids 56, 99 (1983)CrossRefADSGoogle Scholar
  68. 68.
    Acernese F. et al.: In-vacuum optical isolation changes by heating in a Faraday isolator. Appl. Opt. 47, 5853 (2008)Google Scholar
  69. 69.
  70. 70.
    Sun K.-X., Byer R.L.: All-reflective Michelson, Sagnac, and Fabry–Perot interferometers based on grating beam splitters. Opt. Lett. 23, 567 (1998)CrossRefADSGoogle Scholar
  71. 71.
    Friedrich D., Burmeister O., Bunkowski A., Clausnitzer T., Fahr S., Kley E.-B., Tünnermann A., Danzmann K., Schnabel R.: Diffractive beam splitter characterization via a power-recycled interferometer. Opt. Lett. 33, 101 (2008)CrossRefADSGoogle Scholar
  72. 72.
    Bunkowski A., Burmeister O., Danzmann K., Schnabel R., Clausnitzer T., Kley E.-B., Tünnermann A.: Optical Characterization of ultra-high diffraction efficiency gratings. Appl. Opt. 45, 5795 (2006)CrossRefADSGoogle Scholar
  73. 73.
    Bunkowski A., Burmeister O., Danzmann K., Schnabel R.: Input–Output relations for a three-port grating coupled Fabry–Perot cavity. Opt. Lett. 30, 1183 (2005)CrossRefADSGoogle Scholar
  74. 74.
    Bunkowski A., Burmeister O., Danzmann K., Schnabel R., Clausnitzer T., Kley E.-B., Tünnermann A.: Demonstration of three-port grating phase relations. Opt. Lett. 31, 2384 (2006)CrossRefADSGoogle Scholar
  75. 75.
    Bunkowski A., Burmeister O., Beyersdorf P., Danzmann K., Schnabel R., Clausnitzer T., Kley E.-B., Tünnermann A.: Low-loss grating for coupling to a high-finesse cavity. Opt. Lett. 29, 2342 (2004)CrossRefADSGoogle Scholar
  76. 76.
    Freise A., Bunkowksi A., Schnabel R.: Phase and alignment noise in grating interferometers. N. J. Phys. 9, 433 (2007)CrossRefGoogle Scholar
  77. 77.
    Hallam J., Chelkowski S., Freise A., Hild S., Barr B., Strain K.A., Burmeister O., Schnabel R.: Coupling of lateral grating displacement to the output ports of a diffractive Fabry–Perot cavity. J. Opt. A Pure Appl. Opt. 11, 085502 (2009)CrossRefADSGoogle Scholar
  78. 78.
    Harry G.M., Gretarsson A.M., Saulson P.R., Kittelberger S.E., Penn S.D., Startin W.J., Rowan S., Fejer M.M., Crooks D.R.M., Cagnoli G., Hough J., Nakagawa N.: Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings. Class. Quantum Gravit. 19, 897 (2002)zbMATHCrossRefADSGoogle Scholar
  79. 79.
    Agresti, J., Castaldi, G., DeSalvo, R., Pierro, V., Pinto, I.M.: Optimized multilayer dielectric mirror coatings for gravitational wave interferometers. In: Proc. SPIE, vol. 6286 (2006)Google Scholar
  80. 80.
    Harry G.M., Armandula H., Black E., Crooks D.R.M., Cagnoli G., Hough J., Murray P., Reid S., Rowan S., Sneddon P., Fejer M.M., Route R., Penn S.D.: Thermal noise from optical coatings in gravitational wave detectors. Appl. Opt. 45, 1569 (2006)CrossRefADSGoogle Scholar
  81. 81.
    Braginsky V.B., Vyatchanin S.P.: Corner reflectors and quantum-non-demolition measurements in gravitational wave antennae. Phys. Lett. A 324, 345 (2004)CrossRefADSGoogle Scholar
  82. 82.
    Gossler S., Cumpston J., McKenzie K., Mow-Lowry C.M., Gray M.B., McClelland D.E.: Coating-free mirrors for high precision interferometric experiments. Phys. Rev. A 76, 053810 (2007)CrossRefADSGoogle Scholar
  83. 83.
    Bunkowski A., Burmeister O., Friedrich D., Danzmann K., Schnabel R.: High reflectivity grating waveguide coatings for 1064 nm, Class. Quantum Gravit. 23, 7297 (2006)zbMATHCrossRefADSGoogle Scholar
  84. 84.
    Brückner F., Clausnitzer T., Burmeister O., Friedrich D., Kley E.-B., Danzmann K., Tünnermann A., Schnabel R.: Monolithic dielectric surfaces as new low-loss light-matter interfaces. Opt. Lett. 33, 264 (2008)CrossRefADSGoogle Scholar
  85. 85.
    Sharon A., Rosenblatt D., Friesem A.A.: Resonant grating-waveguide structures for visible and near-infrared radiation. J. Opt. Soc. Am. A 14, 2985 (1997)CrossRefADSGoogle Scholar
  86. 86.
    Moharam M.G., Gaylord T.K.: Diffraction analysis of dielectric surface-relief gratings. J. Opt. Soc. Am. 72, 1385 (1982)CrossRefADSGoogle Scholar
  87. 87.
    Brückner F., Friedrich D., Clausnitzer T., Burmeister O., Britzger M., Kley E.-B., Danzmann K., Tünnermann A., Schnabel R.: Demonstration of a cavity coupler based on a resonant waveguide grating. Opt. Express 17, 163 (2009)CrossRefADSGoogle Scholar
  88. 88.
    Chelkowski S., Hild A., Freise A.: Prospects of higher-order Laguerre-Gauss modes in future gravitational wave detectors. Phys. Rev. D 79, 122002 (2009)CrossRefADSGoogle Scholar
  89. 89.
    Gerry C.C., Knight P.L.: Introductory Quantum Optics. Cambridge Univ. Press, Cambridge (2004)CrossRefGoogle Scholar
  90. 90.
    Jaekel M.T., Reynaud S.: Europhys. Lett. 13, 301 (1990)CrossRefADSGoogle Scholar
  91. 91.
    Braginsky V.B., Khalili F.Y.: In: Thorne, K.S. Quantum Measurement, Cambridge University Press, Cambridge (1992)Google Scholar
  92. 92.
    Kimble H.J., Levin Y., Matsko A.B., Thorne K.S., Vyatchanin S.P.: Phys. Rev. D 65, 022002 (2001)CrossRefADSGoogle Scholar
  93. 93.
    Harms J., Chen Y., Chelkowski S., Franzen A., Vahlbruch H., Danzmann K., Schnabel R.: Phys. Rev. D 68, 042001 (2003)CrossRefADSGoogle Scholar
  94. 94.
    Slusher R.E., Hollberg L.W., Yurke B., Mertz J.C., Valley J.F.: Phys. Rev. Lett. 55, 2409 (1985)CrossRefADSGoogle Scholar
  95. 95.
    Lam P.K., Ralph T.C., Buchler B.C., McClelland D.E., Bachor H.A., Gao J.: Optimisation and transfer of vacuum squeezing from a below threshold optical parametric oscillator. J. Opt. B Quant. Semi. Class. Opt. 1, 469 (1999)CrossRefADSGoogle Scholar
  96. 96.
    McKenzie K., Grosse N., Bowen W.P., Whitcomb S.E., Gray M.B., McClelland D.E., Lam P.K.: Phys. Rev. Lett. 93, 161105 (2004)CrossRefADSGoogle Scholar
  97. 97.
    Chelkowski S., Vahlbruch H., Danzmann K., Schnabel R.: Coherent control of broadband vacuum squeezing. Phys. Rev. A 75, 043814 (2007)CrossRefADSGoogle Scholar
  98. 98.
    Vahlbruch H., Chelkowski S., Hage B., Franzen A., Danzmann K., Schnabel R.: Coherent control of vacuum squeezing in the gravitational-wave detection band. Phys. Rev. Lett. 97, 011101 (2006)CrossRefADSGoogle Scholar
  99. 99.
    Vahlbruch H. et al.: Observation of squeezed light with 10 dB quantum-noise reduction. Phys. Rev. Lett. 100, 33602 (2008)CrossRefADSGoogle Scholar
  100. 100.
    Goda K., Miyakawa O., Mikhailov E.E., Saraf S., Adhikari R., McKenzie K., Ward R., Vass S., Weinstein A.J., Mavalvala N.: A quantum-enhanced prototype gravitational-wave detector. Nat. Phys. 4, 472 (2008)CrossRefGoogle Scholar
  101. 101.
    Vahlbruch H., Chelkowski S., Danzmann K., Schnabel R.: Quantum engineering of squeezed states for quantum communication and metrology. N. J. Phys. 9, 371 (2007)CrossRefGoogle Scholar
  102. 102.
    McKenzie K., Mikhailov E., Goda K., Lam P.K., Grosse N., Gray M.B., McClelland D.E.: Quantum noise locking. J. Opt. B Quantum Semiclass. Opt. 7, S421 (2005)CrossRefADSGoogle Scholar
  103. 103.
    McKenzie K., Shaddock D.A., McClelland D.E., Buchler B.C., Lam P.K.: Phys. Rev. Lett. 88, 231102 (2002)CrossRefADSGoogle Scholar
  104. 104.
    Vahlbruch H., Chelkowski S., Hage B., Franzen A., Danzmann K., Schnabel R.: Phys. Rev. Lett. 95, 211102 (2005)CrossRefADSGoogle Scholar
  105. 105.
    Schnabel R.: Gravitational wave detectors: squeezing up the sensitivity. Nat. Phys. 4, 440 (2008) (News and Views)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  • Nergis Mavalvala
    • 1
  • David E. McClelland
    • 2
  • Guido Mueller
    • 3
    Email author
  • D. H. Reitze
    • 3
  • Roman Schnabel
    • 4
  • Benno Willke
    • 4
  1. 1.LIGO LaboratoryMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.ANU Centre for Gravitational PhysicsAustralian National UniversityCanberraAustralia
  3. 3.Department of PhysicsUniversity of FloridaGainesvilleUSA
  4. 4.Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Leibniz Universität HannoverHannoverGermany

Personalised recommendations