General Relativity and Gravitation

, Volume 42, Issue 11, pp 2713–2728 | Cite as

Boundary term in metric f (R) gravity: field equations in the metric formalism

  • Alejandro Guarnizo
  • Leonardo CastañedaEmail author
  • Juan M. Tejeiro
Research Article


The main goal of this paper is to get in a straightforward form the field equations in metric f (R) gravity, using elementary variational principles and adding a boundary term in the action, instead of the usual treatment in an equivalent scalar–tensor approach. We start with a brief review of the Einstein–Hilbert action, together with the Gibbons–York–Hawking boundary term, which is mentioned in some literature, but is generally missing. Next we present in detail the field equations in metric f (R) gravity, including the discussion about boundaries, and we compare with the Gibbons–York–Hawking term in General Relativity. We notice that this boundary term is necessary in order to have a well defined extremal action principle under metric variation.


Modified theories of gravity f (R) gravity Variational principles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Will C.M.: Theory and Experiment in Gravitational Physics. Cambridge University Press, Cambridge (1993)zbMATHGoogle Scholar
  2. 2.
    Misner C.W., Thorne K.S., Wheeler J.H.: Gravitation. W.H. Freeman and Company, Reading (1973)Google Scholar
  3. 3.
    Wald R.M.: General Relativity. The University of Chicago Press, Chicago (1984)zbMATHGoogle Scholar
  4. 4.
    Poisson E.: A Relativist’s Toolkit—The Mathematics of Black-Hole Mechanics. Cambridge University Press, Cambridge (2004)zbMATHCrossRefGoogle Scholar
  5. 5.
    Padmanabhan T.: Gravitation: Foundations and Frontiers. Cambridge University Press, Cambridge (2010)zbMATHGoogle Scholar
  6. 6.
    Weinberg S.: Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley, New York (1972)Google Scholar
  7. 7.
    Carroll S.M.: Spacetime and Geometry: An Introduction to General Relativity. Addison Wesley, San Francisco (2004)zbMATHGoogle Scholar
  8. 8.
    Hawking S.W., Ellis J.F.R.: The Large Scale Structure of Space–Time. Cambridge University Press, Cambridge (1973)zbMATHCrossRefGoogle Scholar
  9. 9.
    Gibbons G.W., Hawking S.W.: Action integrals and partition functions in quantum gravity. Phys. Rev. D 15, 27–52 (1977)MathSciNetGoogle Scholar
  10. 10.
    Hawking S.W., Horowitz G.T.: The gravitational Hamiltonian, action, entropy and surface terms. Class. Quantum. Grav. 13, 1487–1498 (1996) arXiv:gr-qc/9501014zbMATHCrossRefMathSciNetADSGoogle Scholar
  11. 11.
    Schmidt H.-J.: Variational derivatives of arbitrarily high order and multi-inflation cosmological models. Class. Quantum Grav. 7, 1023–1031 (1990)zbMATHCrossRefADSGoogle Scholar
  12. 12.
    Wands D.: Extended gravity theories and the Einstein–Hilbert action Class. Quantum Grav. 11, 269–280 (1994) arXiv:gr-qc/9307034CrossRefMathSciNetADSGoogle Scholar
  13. 13.
    Farhoudi M.: On higher order gravities, their analogy to GR, and dimensional dependent version of Duff’s trace anomaly relation. Gen. Relativ. Gravit. 38, 261–1284 (2006) arXiv:physics/0509210v2CrossRefMathSciNetGoogle Scholar
  14. 14.
    Querella, L.: Variational principles and cosmological models in higher-order gravity. PhD thesis (1998). arXiv:gr-qc/9902044v1Google Scholar
  15. 15.
    Nojiri S., Odintsov S.D.: Modified gravity as an alternative for Lambda-CDM cosmology. J. Phys. A 40, 6725–6732 (2007) arXiv:hep-th/0610164zbMATHCrossRefADSGoogle Scholar
  16. 16.
    Sami, M.: Dark energy and possible alternatives (2009). arXiv:0901.0756Google Scholar
  17. 17.
    Borowiec, A., Godlowski, W., Szydlowski, M.: Dark matter and dark energy as a effects of modified gravity. ECONF C0602061, 09 (2006). arXiv:astro-ph/0607639v2Google Scholar
  18. 18.
    Durrer R., Maartens R.: Dark energy and dark gravity: theory overview. Gen. Relativ. Gravit. 40, 301–328 (2008)zbMATHCrossRefMathSciNetADSGoogle Scholar
  19. 19.
    Carroll S.M., Duvvuri V., Trodden M., Turner M.S.: Is cosmic speed-up due to new gravitational physics?. Phys. Rev. D 70, 043528 (2004) arXiv:astro-ph/0306438CrossRefADSGoogle Scholar
  20. 20.
    Nojiri, S., Odintsov, S.D.: Introduction to modified gravity and gravitational alternative for dark energy. ECONF C0602061, 06 (2006). arXiv:hep-th/0601213Google Scholar
  21. 21.
    Capozziello S., Francaviglia M.: Extended theories of gravity and their cosmological and astrophysical applications. Gen. Relativ. Gravit. 40, 357–420 (2008) arXiv:0706.1146v2zbMATHCrossRefMathSciNetADSGoogle Scholar
  22. 22.
    Faraoni, V.: f (R) gravity: successes and challenges (2008). arXiv:0810.2602Google Scholar
  23. 23.
    Sotiriou, T.P.: 6+1 lessons from f (R) gravity. J. Phys. Conf. Ser. 189, 012039 (2009). arXiv:0810.5594Google Scholar
  24. 24.
    Capozziello, S., De Laurentis, M., Faraoni, V.: A bird’s eye view of f (R)-gravity (2009). arXiv:0909.4672Google Scholar
  25. 25.
    Sotiriou, T.P., Faraoni, V.: f (R) Theories of gravity (2008). arXiv:0810.2602Google Scholar
  26. 26.
    Buchdahl H.A.: Non-linear Lagrangians and cosmological theory. Mon. Notices R. Astron. Soc. 150, 1–8 (1970)ADSGoogle Scholar
  27. 27.
    Barth N.H.: The fourth-order gravitational action for manifolds with boundaries. Class. Quantum Grav. 2, 497–513 (1985)zbMATHCrossRefMathSciNetADSGoogle Scholar
  28. 28.
    Nojiri S., Odintsov S.D.: Brane-world cosmology in higher derivative gravity or warped compactification in the next-to-leading order of AdS/CFT correspondence. JHEP 0007, 049 (2000) arXiv:hep-th/0006232CrossRefMathSciNetADSGoogle Scholar
  29. 29.
    Nojiri S., Odintsov S.D.: Is brane cosmology predictable? Gen. Relativ. Gravit. 37, 1419–1425 (2005) arXiv:hep-th/0409244zbMATHCrossRefMathSciNetADSGoogle Scholar
  30. 30.
    Madsen M.S., Barrow J.D.: De Sitter ground states and boundary terms in generalized gravity. Nucl. Phys. B 323, 242–252 (1989)CrossRefMathSciNetADSGoogle Scholar
  31. 31.
    Fatibene L., Ferraris M., Francaviglia M.: Augmented variational principles and relative conservation laws in classical field theory. Int. J. Geom. Methods Mod. Phys. 2, 373–392 (2005) arXiv:math-ph/0411029v1zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Francaviglia M., Raiteri M.: Hamiltonian, energy and entropy in general relativity with non-orthogonal boundaries. Class. Quant. Grav. 19, 237–258 (2002) arXiv:grqc/ 0107074v1zbMATHCrossRefMathSciNetADSGoogle Scholar
  33. 33.
    Casadio R., Gruppuso A.: On boundary terms and conformal transformations in curved spacetimes. Int. J. Mod. Phys. D 11, 703–714 (2002) arXiv:gr-qc/0107077zbMATHCrossRefMathSciNetADSGoogle Scholar
  34. 34.
    Balcerzak, A., Dabrowski, M.P.: Gibbons-Hawking boundary terms and junction conditions for higher-order brane gravity models (2008). arXiv:0804.0855Google Scholar
  35. 35.
    Nojiri S., Odintsov S.D.: Finite gravitational action for higher derivative and stringy gravities. Phys. Rev. D 62, 064018 (2000) arXiv:hep-th/9911152CrossRefMathSciNetADSGoogle Scholar
  36. 36.
    Dabrowski, M.P., Balcerzak, A.: Higher-order brane gravity models (2009). arXiv:0909.1079Google Scholar
  37. 37.
    Nojiri S., Odintsov S.D., Ogushi S.: Finite action in d5 gauged supergravity and dilatonic conformal anomaly for dual quantum field theory. Phys. Rev. D 62, 124002 (2000) arXiv:hep-th/0001122v4CrossRefMathSciNetADSGoogle Scholar
  38. 38.
    Dyer E., Hinterbichler K.: Boundary terms, variational principles and higher derivative modified gravity. Phys. Rev. D. 79, 024028 (2009) arXiv:0809.4033CrossRefMathSciNetADSGoogle Scholar
  39. 39.
    Sotiriou, T.P.: Modified actions for gravity: theory and phenomenology. PhD thesis, International School for Advanced Studies (2007). arXiv:0710.4438v1Google Scholar
  40. 40.
    Sotiriou T.P., Liberati S.: Metric-affine f(R) theories of gravity. Ann. Phys. 322, 935–966 (2007) arXiv:gr-qc/0604006v2zbMATHCrossRefMathSciNetADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Alejandro Guarnizo
    • 1
  • Leonardo Castañeda
    • 1
    Email author
  • Juan M. Tejeiro
    • 1
  1. 1.Observatorio Astronómico NacionalUniversidad Nacional de ColombiaBogotáColombia

Personalised recommendations