Advertisement

General Relativity and Gravitation

, Volume 43, Issue 2, pp 623–656 | Cite as

Improving the sensitivity of future GW observatories in the 1–10 Hz band: Newtonian and seismic noise

  • M. G. Beker
  • G. CellaEmail author
  • R. DeSalvo
  • M. Doets
  • H. Grote
  • J. Harms
  • E. Hennes
  • V. Mandic
  • D. S. Rabeling
  • J. F. J. van den Brand
  • C. M. van Leeuwen
Open Access
Research Article

Abstract

The next generation gravitational wave interferometric detectors will likely be underground detectors to extend the GW detection frequency band to frequencies below the Newtonian noise limit. Newtonian noise originates from the continuous motion of the Earth’s crust driven by human activity, tidal stresses and seismic motion, and from mass density fluctuations in the atmosphere. It is calculated that on Earth’s surface, on a typical day, it will exceed the expected GW signals at frequencies below 10 Hz. The noise will decrease underground by an unknown amount. It is important to investigate and to quantify this expected reduction and its effect on the sensitivity of future detectors, to plan for further improvement strategies. We report about some of these aspects. Analytical models can be used in the simplest scenarios to get a better qualitative and semi-quantitative understanding. As more complete modeling can be done numerically, we will discuss also some results obtained with a finite-element-based modeling tool. The method is verified by comparing its results with the results of analytic calculations for surface detectors. A key point about noise models is their initial parameters and conditions, which require detailed information about seismic motion in a real scenario. We will describe an effort to characterize the seismic activity at the Homestake mine which is currently in progress. This activity is specifically aimed to provide informations and to explore the site as a possible candidate for an underground observatory. Although the only compelling reason to put the interferometer underground is to reduce the Newtonian noise, we expect that the more stable underground environment will have a more general positive impact on the sensitivity. We will end this report with some considerations about seismic and suspension noise.

Keywords

Gravitational waves Noises 

Notes

Acknowledgments

We are grateful to Dr. Rudolf Widmer-Schnidrig from the University of Stuttgart for permission to use Fig. (3). This work is part of the research programme of the Foundation for Fundamental Research on Matter (FOM), which is financially supported by the Netherlands Organization for Scientific Research (NWO). Funding and support of this study is also provided by The National Science Foundation through the LIGO cooperative agreement and the Minnesota U. grant.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. 1.
    Hild, S., Chelkowski, S., Freise, A.: Pushing towards the ET sensitivity using ‘conventional’ technology. arXiv:0810.0604v2 (2008)Google Scholar
  2. 2.
    Hild, S., et al.: A xylophone configuration for a third generation gravitational wave detector (2009), arXiv:0906.2655Google Scholar
  3. 3.
    Advanced LIGO anticipated sensitivity curves. LIGO-T0900288-v2, https://dcc.ligo.org/cgi-bin/private/DocDB/ShowDocument?docid=2974
  4. 4.
    Saulson P.: Terrestrial gravitational noise on a gravitational wave antenna. Phys. Rev. D 30, 732 (1984)CrossRefADSGoogle Scholar
  5. 5.
    Hughes S.A., Thorne K.S.: Seismic gravity-gradient noise in interferometric gravitational-wave detectors. Phys. Rev. D 58, 122002 (1998)CrossRefADSGoogle Scholar
  6. 6.
    Beccaria M. et al.: Relevance of Newtonian seismic noise for the VIRGO interferometer sensitivity. Class. Quantum Grav. 15, 3339 (1998)ADSGoogle Scholar
  7. 7.
    Creighton T.: Tumbleweeds and airborne gravitational noise sources for LIGO. Class. Quantum Grav. 25, 125011 (2008)CrossRefADSGoogle Scholar
  8. 8.
    Cafaro, C., Ali, S.A.: Analytical estimate of atmospheric Newtonian noise generated by acoustic and turbulent phenomena in laser-interferometric gravitational waves detectors. arXiv:0906.4844 [gr-qc]Google Scholar
  9. 9.
    Hough S.E. et al.: Ambient noise and weak-motion excitation of sediment resonances: results from the Tiber Valley, Italy. Bull. Seism. Soc. Am. 82, 1186 (1992)Google Scholar
  10. 10.
    Bour M. et al.: On the use of microtremor recordings in seismic microzonation. Soil Dyn. Earth. Eng. 17, 465 (1998)CrossRefGoogle Scholar
  11. 11.
    Noble J.A., Harder J.O.: Stratigraphy and metamorphism in a part of the Northern Black Hills and the Homestake mine, Lead, South Dakota. Bull. Geol. Soc. Am. 50, 941 (1948)Google Scholar
  12. 12.
    Einstein Telescope WG1 report: selection criteria for ET candidate sites (2009)Google Scholar
  13. 13.
    Grote, H.: Seismic Data from the Black Forest Underground Station and Experience from Kamioka, ET, WP1 meeting, Gran Sasso, (February 2009)Google Scholar
  14. 14.
    Berger et al.: Ambient earth noise: a survey of the global seismographic network. JGR 109, B11307 (2004)CrossRefADSGoogle Scholar
  15. 15.
    Peterson, J.: Observations and modeling of seismic background noise. US Department of Interior Geological Survey, Open-file report 93–322 (1993)Google Scholar
  16. 16.
    Caticha, A., Preuss, R.: Maximum entropy and bayesian data analysis: entropic priors. Phys. Rev. E 70, 046127Google Scholar
  17. 17.
    Cella G.: Off line subtraction of seismic Newtonian noise. In: Casciaro, B., Fortunato, D., Francaviglia, M., Masiello, A. (eds) Recent Developments in General Relativity, Springer, Heidelberg (2000)Google Scholar
  18. 18.
    Saulson P.R.: Fundamentals of Interferometric Gravitational Wave Detectors. World Scientific, Singapore (1997)Google Scholar
  19. 19.
    Thorne K.S., Winstein C.J.: Human gravity-gradient noise in interferometric gravitational-wave detectors. Phys. Rev. D 60, 082001 (1999)CrossRefADSGoogle Scholar
  20. 20.
    Woods, R.D.: Screening the surface waves in soils. In: Proceedings of ASCE 94 SM4, 951–979Google Scholar
  21. 21.
    Bartos, R., et al.: Timing system document map advanced LIGO, LIGO-090003, https://dcc.ligo.org/cgi-bin/private/DocDB/ShowDocument?docid=483
  22. 22.
    Braccini S. et al.: Measurement of the seismic attenuation performance of the VIRGO Superattenuator. Astropart. Phys. 23, 557–565 (2005)CrossRefADSGoogle Scholar
  23. 23.
    Braccini, S., et al.: Superattenuator seismic isolation measurement by Virgo interferometer: a comparison with the future generation antenna requirements. ET-025-09 (Technical report of Einstein Telescope FP7 Design Study). Submitted to Astropart. PhysGoogle Scholar
  24. 24.
    Ohashi M.: Status of LCGT and CLIO. J. Phys. Conf. Ser. 120, 032008 (2008)CrossRefADSGoogle Scholar
  25. 25.
    Di Cintio, A., Marchesoni, F., Ascione, M., Bhawal, A., De Salvo, R.: Dislocation movement and hysteresis in Maraging blades. LIGO-P0900928Google Scholar
  26. 26.
    Di Cintio, A.: Astrophysics issues and low frequency mechanical noise for third generation gravitational waves detectors. Master Thesis, LIGO -P0900076Google Scholar
  27. 27.
    Stochino A. et al.: Improvement of the seismic noise attenuation performance of the Monolithic Geometric Anti-Spring filters for gravitational wave interferometric detectors. Nucl. Instr. Meth. Phys. Res. A 580(3), 1559–1564 (2007)CrossRefADSGoogle Scholar
  28. 28.
    Schlamminger, S., Gurlach, J.: Private communication (2009)Google Scholar
  29. 29.
    Kılıç E.: Explicit formula for the inverse of a tridiagonal matrix by backward continued fractions. Appl Math Comput 197, 345–357 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Phinney, S., Bender, P., Buchman, S., Byer, R., Cornish, N., Fritschel, P., Folkner, W., Merkowitz, S., Danzmann, K., DiFiore, L., Kawamura, S., Schutz, B., Vecchio, A., Vitale, S.: The Big Bang Observer, BBO ProposalGoogle Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  • M. G. Beker
    • 1
  • G. Cella
    • 2
    Email author
  • R. DeSalvo
    • 3
  • M. Doets
    • 1
  • H. Grote
    • 4
    • 5
  • J. Harms
    • 6
  • E. Hennes
    • 1
  • V. Mandic
    • 6
  • D. S. Rabeling
    • 1
    • 7
  • J. F. J. van den Brand
    • 1
    • 7
  • C. M. van Leeuwen
    • 1
    • 7
  1. 1.Nikhef, National Institute for Subatomic PhysicsAmsterdamThe Netherlands
  2. 2.Istituto Nazionale di Fisica Nucleare sez. PisaPisaItaly
  3. 3.LIGO Laboratories, California Institute of TechnologyPasadenaUSA
  4. 4.Max-Planck-Institute for Gravitational Research (Albert Einstein Institute)HannoverGermany
  5. 5.Leibniz University HannoverHannoverGermany
  6. 6.University of MinnesotaMinneapolisUSA
  7. 7.VU University AmsterdamAmsterdamThe Netherlands

Personalised recommendations