Advertisement

General Relativity and Gravitation

, Volume 43, Issue 2, pp 363–385 | Cite as

Toward a third generation of gravitational wave observatories

  • Michele PunturoEmail author
  • Harald Lück
Research Article

Abstract

Large gravitational wave interferometric detectors, like Virgo and LIGO, demonstrated the capability to reach their design sensitivity, but to transform these machines into an effective observational instrument for gravitational wave astronomy a large improvement in sensitivity is required. Advanced detectors in the near future and third generation observatories in slightly more than one decade will open the possibility to perform gravitational wave astronomical observations from the Earth. An overview of the technological progress needed to realize a third generation observatory, like the Einstein Telescope (ET), and a possible evolution scenario are discussed in this paper.

Keywords

Gravitational waves Future detectors Einstein telescope 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Grote H. et al.: Class. Quantum Grav. 25, 114043 (2008)CrossRefADSGoogle Scholar
  2. 2.
    Abbott B.P. et al.: Rep. Prog. Phys. 72, 076901 (2009)CrossRefADSGoogle Scholar
  3. 3.
    Arai K. et al.: J. Phys. Conf. Ser. 120, 032010 (2008)CrossRefADSGoogle Scholar
  4. 4.
    Acernese F. et al.: Class. Quantum Grav. 25, 114045 (2008)CrossRefADSGoogle Scholar
  5. 5.
    Harry G.M.: LIGO Scientific Collaboration.: Advanced ligo: the next generation of gravitational wave detectors. Class. Quantum Grav. 27(8), 084006 (2010)CrossRefMathSciNetADSGoogle Scholar
  6. 6.
    Flaminio, R., et al.: Advanced Virgo White Paper, VIRNOTDIR1390304 (2005)Google Scholar
  7. 7.
    Acernese, F., et al.: Advanced Virgo Baseline Design, VIR027A09 (2009)Google Scholar
  8. 8.
    Abadie, J., LIGO and Virgo collaborations.: Predictions for the Rates of Compact Binary Coalescences Observable by Ground-based Gravitational-wave Detectors, arXiv:1003.2480, Class. Quantam Grav. (2010) (submitted)Google Scholar
  9. 9.
    The Virgo Collaboration, Advanced Virgo Preliminary Design, VIRu089A08 (2009)Google Scholar
  10. 10.
    The Einstein Telescope design study (FP7-Capacities, Grant Agreement 211743), http://www.et-gw.eu/
  11. 11.
    Hough J., Rowan S.: J. Opt. A: Pure Appl. Opt. 7, S257–S264 (2005)CrossRefADSGoogle Scholar
  12. 12.
    Bender, P.L., Danzmann, K.: (the LISA Study Team) Laser interferometer space antenna for the detection of gravitational waves. Pre–Phase A Report, Doc. MPQ 233 Max-Planck–Institüt für Quantenoptik, Garching (1998)Google Scholar
  13. 13.
    Shaddock D.A.: Class. Quantum Grav. 25, 114012 (2008)CrossRefADSGoogle Scholar
  14. 14.
    Braccini S. et al.: Astroparticle Phys. 23, 557–565 (2005)CrossRefADSGoogle Scholar
  15. 15.
    Acernese F. et al.: Measurements of superattenuator seismic isolation by virgo interferometer. Astropart. Phys. 33(3), 182–189 (2010)CrossRefADSGoogle Scholar
  16. 16.
    Abbott R. et al.: Class. Quantum Grav. 19, 1591–1597 (2002)CrossRefADSGoogle Scholar
  17. 17.
    Bialowons, W., et al.: Measurement of ground motion in various sites, EUROTeV-Report-2007-011 (2007)Google Scholar
  18. 18.
    Uchiyama T. et al.: Class. Quantum Grav. 21, S1161 (2004)CrossRefADSGoogle Scholar
  19. 19.
    Ando M. et al.: Phys. Rev. Lett. 86, 3950 (2001)CrossRefADSGoogle Scholar
  20. 20.
    Sato S. et al.: Phys. Rev. D 69, 102005 (2004)CrossRefADSGoogle Scholar
  21. 21.
    Saulson P.R.: Phys. Rev. D 30, 732–736 (1984)CrossRefADSGoogle Scholar
  22. 22.
    Beccaria M.: Class. Quantum Grav. 15, 3339–3362 (1998)ADSGoogle Scholar
  23. 23.
    Hughes S.A., Thorne K.S.: Phys. Rev. D 58, 122002 (1998)CrossRefADSGoogle Scholar
  24. 24.
    Cella, G.: Low Frequency Limit. Talk at the Fujihara Seminar, http://gw.icrr.u-tokyo.ac.jp:8888/fujihara_seminar_presentation/presentations/Fujihara2009-Cella.pdf (2009)
  25. 25.
    Cella, G.: Gravity Gradient Noise: estimates & reduction strategies, Talk at the 2nd ET Annual meeting, http://www.et-gw.eu/2ndgeneralworkshop (2009)
  26. 26.
    Callen H.B., Welton T.A.: Phys. Rev. 83, 34 (1951)zbMATHCrossRefMathSciNetADSGoogle Scholar
  27. 27.
    Kovalik J., Saulson P.R.: Rev. Sci. Instrum. 64, 2942 (1993)CrossRefADSGoogle Scholar
  28. 28.
    Braginsky V.B. et al.: Phys. Lett. A 175, 82 (1993)CrossRefADSGoogle Scholar
  29. 29.
    Rowan S. et al.: Phys. Lett. A 227, 153 (1997)CrossRefADSGoogle Scholar
  30. 30.
    Cagnoli G. et al.: Phys. Lett. A 255, 230–235 (1999)CrossRefADSGoogle Scholar
  31. 31.
    Cagnoli G. et al.: Phys. Lett. A 213, 245–252 (1996)CrossRefADSGoogle Scholar
  32. 32.
    Cagnoli G. et al.: Rev. Scientific Instrum. 71, 2206–2210 (2000)CrossRefADSGoogle Scholar
  33. 33.
    Robertson, N., et al.: In: Proceedings of the Third E. Amaldi Conference AIP, New York, 313 (2000)Google Scholar
  34. 34.
    Cagnoli G. et al.: Phys. Rev. Lett. 85, 2442–2445 (2000)CrossRefADSGoogle Scholar
  35. 35.
    Rowan S. et al.: Phys. Lett. A 246, 471–478 (1998)CrossRefADSGoogle Scholar
  36. 36.
    Cagnoli G. et al.: Rev. Scientific Instrum. 73, 3318–3323 (2002)CrossRefGoogle Scholar
  37. 37.
    Kuroda K. et al.: Int. J. Modern Phys. D 8, 557–579 (1999)CrossRefADSGoogle Scholar
  38. 38.
    Puppo, P., Ricci, F.: Gen. Relativ. Gravit. (2009, in preparation)Google Scholar
  39. 39.
    Caparrelli, S., et al.: Report ILIAS-JR3-C1 activity, http://www.ego-gw.it/ILIAS-GW/documents/STREGAreport2007/Long~reports/Report_C1_2007_D10.doc (2007)
  40. 40.
    Uchiyama T. et al.: Phys. Lett. A 273, 310–315 (2000)CrossRefADSGoogle Scholar
  41. 41.
    Tomaru T. et al.: Phys. Lett. A 310, 215–219 (2002)CrossRefADSGoogle Scholar
  42. 42.
    Alshourbagy M. et al.: Rev. Scientific Instrum. 77, 044502 (2006)CrossRefADSGoogle Scholar
  43. 43.
    Reid S. et al.: Phys. Lett. A 351, 205–211 (2006)zbMATHCrossRefADSGoogle Scholar
  44. 44.
    Crooks D.R.M. et al.: Class. Quantum Grav. 21, S1059–S1065 (2004)CrossRefADSGoogle Scholar
  45. 45.
    Harry G.M. et al.: Class. Quantum Grav. 19, 897–917 (2002)zbMATHCrossRefADSGoogle Scholar
  46. 46.
    Harry G.M. et al.: Class. Quantum Grav. 24, 405–415 (2007)CrossRefADSGoogle Scholar
  47. 47.
    Agresti, J., et al.: Optimized multilayer dielectric mirror coatings for gravitational wave interferometers. In: Advances in thin-film coatings for optical applications, Proceedings of SPIE, 6286, pp. 628608.1–628608.10 (2006) (LIGO P060027-00-Z)Google Scholar
  48. 48.
    Yamamoto K. et al.: Phys. Rev. D 74, 022002 (2006)CrossRefADSGoogle Scholar
  49. 49.
    Martin I. et al.: Class. Quantum Grav. 25, 055005 (2008)CrossRefADSGoogle Scholar
  50. 50.
    Villar, A.E., et al.: Measurement of Thermal Noise in Multilayer Coatings with Optimized Layer Thickness (in preparation)Google Scholar
  51. 51.
    Tomaru T. et al.: Class. Quantum Grav. 19, 2045 (2002)CrossRefADSGoogle Scholar
  52. 52.
    Tomaru T. et al.: Phys. Lett. A 283, 80–84 (2001)CrossRefADSGoogle Scholar
  53. 53.
    Green M.A., Keevers M.J.: Progr. Photov. Res. Appl. 3, 189 (1995)CrossRefGoogle Scholar
  54. 54.
    Brückner F. et al.: Optics Express 17, 163–169 (2009)CrossRefADSGoogle Scholar
  55. 55.
    Bunkowski A. et al.: J. Phys. Conf. Ser. 32, 333–338 (2006)CrossRefADSGoogle Scholar
  56. 56.
    Franc, J., et al.: ET internal note: ET-021-09 (2009)Google Scholar
  57. 57.
    Agresti, J., De Salvo, R.: Flat Beam Profile to Depress Thermal Noise, LIGO-G050041-00-Z (2005)Google Scholar
  58. 58.
    Mours B. et al.: Class. Quantum Grav. 23, 5777–5784 (2006)zbMATHCrossRefMathSciNetADSGoogle Scholar
  59. 59.
    Franc, J., et al.: Effect of Laguerre Gauss modes on thermal noise, talk at the ET–WP3–meeting, https://workarea.et-.gw.eu/et/WG3-.Topology/presentations/Franc-WP3-090609.ppt (2009)
  60. 60.
    Zeilinger, A.: General properties of lossless beam splitters in interferometry. Am. J. Phys. 49(9) (1981)Google Scholar
  61. 61.
    Corbitt, T.R.: Quantum noise and radiation pressure effects in high power optical interferometers. PhD Thesis, MIT (2008)Google Scholar
  62. 62.
  63. 63.
    Okada Y., Tokumaru Y.: J. Appl. Phys. 56, 2314 (1984)CrossRefGoogle Scholar
  64. 64.
    Damon D.H.: Phys. Rev. B 8, 5860 (1973)CrossRefADSGoogle Scholar
  65. 65.
    Glassbrenner C.J., Slack G.A.: Phys. Rev. 134, A1058–A1069 (1964)CrossRefADSGoogle Scholar
  66. 66.
    Nawrodt R. et al.: J. Phys. Conf. Ser. 122, 012008 (2008)CrossRefADSGoogle Scholar
  67. 67.
    Mavalvala, N., McClelland, D.E., Mueller, G., Reitze, D.H., Schnabel, R., Willke, B.: Gen. Relativ. Gravit. (2009, in preparation)Google Scholar
  68. 68.
    Buonanno A., Chen Y.: Phys. Rev. D 67, 062002 (2003)CrossRefADSGoogle Scholar
  69. 69.
    Buonanno A., Chen Y.: Phys. Rev. D 69, 102004 (2004)CrossRefADSGoogle Scholar
  70. 70.
    Kimble H.J., Levin Y., Matsko A.B., Thorne K.S., Vyatchanin S.P.: (KLMTV): PRD 65, 022002 (2001)CrossRefADSGoogle Scholar
  71. 71.
    Corbitt T. et al.: Optical Cavities as amplitude filter of squeezed fields. Phys. Rev. D 70, 022002 (2004)CrossRefADSGoogle Scholar
  72. 72.
    Khalili, F.Y., et al.: ArXiv:0905.1291v2:[gr-qc] (2009)Google Scholar
  73. 73.
    Thüring A. et al.: Opt. Lett. 34, 825–826 (2009)CrossRefGoogle Scholar
  74. 74.
    Willke B. et al.: Class. Quantum Grav. 23, S207–S214 (2006)CrossRefADSGoogle Scholar
  75. 75.
    Braginsky V.B. et al.: Phys. Lett. A 287, 331 (2001)CrossRefADSGoogle Scholar
  76. 76.
    Ju L. et al.: Phys. Lett. A 354, 360 (2006)CrossRefADSGoogle Scholar
  77. 77.
    Ju L. et al.: Phys. Lett. A 355, 419 (2006)CrossRefADSGoogle Scholar
  78. 78.
    Yamamoto K. et al.: J. Phys. Conf. Ser. 122, 012015 (2008)CrossRefADSGoogle Scholar
  79. 79.
    Yamamoto, K.: Parametric instability of a cavity of Einstein Telescope, ET–029–09 (2009)Google Scholar
  80. 80.
    Dimopoulos, S., et al.: Gravitational Wave Detection with Atom Interferometry. arXiv:0712.1250v1 [gr-qc]Google Scholar
  81. 81.
    Chen, Y., Danilishin, S.L., Khalili, F.Ya., Müller-Ebhardt, H.: Gen. Relativ. Gravit. (2009, in preparation)Google Scholar
  82. 82.
    Hild, S., et al.: Pushing towards the ET sensitivity using conventional technology (2008). arXiv:0810.0604v2 [gr-qc]Google Scholar
  83. 83.
    Shoemaker, D.: presentation at Aspen meeting, http://www.ligo.caltech.edu/docs/G/G010026-00.pdf (2001)
  84. 84.
    Conforto G., DeSalvo R.: Nucl. Instr. Methods Phys. Res. Sect. A 518, 228–232 (2004)CrossRefADSGoogle Scholar
  85. 85.
    Hild, S., et al.: A Xylophone Configuration for a third Generation Gravitational Wave Detector (2009), submitted to CQG. arXiv:0906.2655v2 [gr-qc]Google Scholar
  86. 86.
    Winkler, W., et al.: Plans for a large gravitational wave antenna in Germany MPQ Report 101 (presented by A Rüdiger at the 4th Marcel Grossmann Meeting, Rome) (1985)Google Scholar
  87. 87.
    Maischberger K., et al.: Vorschlag zum Bau eines groen Laser-Interferometers zur Messung von Gravitationswellen MPQ Report 96 (in German) (1985)Google Scholar
  88. 88.
    Freise A. et al.: Class. Quantum Grav. 26, 085012 (2009)CrossRefADSGoogle Scholar
  89. 89.
    Nayak K.R. et al.: Phys. Rev. D 68, 122001 (2003)CrossRefMathSciNetADSGoogle Scholar
  90. 90.
    Nayak K.R. et al.: Phys. Rev. D 70, 049901 (2004)CrossRefADSGoogle Scholar
  91. 91.
    Sathyaprakash, B.S., Schutz, B.F.: Living Review in Relativity, Physics, Astrophysics and Cosmology with Gravitational Waves, (http://relativity.livingreviews.org/open?pubNo=lrr-2009-2&page=articlesu30.html)
  92. 92.
    McKechan, D., et al.: Gravitational Waves with Amplitude Corrections and Higher Harmonics from Compact Binary Coalescences, LIGO–G0900318–v3 (2009)Google Scholar
  93. 93.
    Amaro-Seoane, P., et al.: Einstein telescope design study: vision document. (2009, in preparation) (https://workarea.et-gw.eu/et/WG4-Astrophysics/visdoc/VisDoc-090616.pdf)

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Istituto Nazionale di Fisica Nucleare, Sezione di PerugiaPerugiaItaly
  2. 2.Institut für GravitationsphysikLeibniz Universität HannoverHannoverGermany

Personalised recommendations