Advertisement

General Relativity and Gravitation

, Volume 42, Issue 6, pp 1345–1374 | Cite as

Periodic relativity: basic framework of the theory

  • Vikram H. Zaveri
Research Article

Abstract

An alternative gravity theory is proposed which does not rely on Riemannian geometry and geodesic trajectories. The theory named periodic relativity (PR) does not use the weak field approximation and allows every two body system to deviate differently from the flat Minkowski metric. PR differs from general relativity (GR) in predictions of the proper time intervals of distant objects. PR proposes a definite connection between the proper time interval of an object and gravitational frequency shift of its constituent particles as the object travels through the gravitational field. PR is based on the dynamic weak equivalence principle which equates the gravitational mass with the relativistic mass. PR provides very accurate solutions for the Pioneer anomaly and the rotation curves of galaxies outside the framework of general relativity. PR satisfies Einstein’s field equations with respect to the three major GR tests within the solar system and with respect to the derivation of Friedmann equation in cosmology. This article defines the underlying framework of the theory.

Keywords

Time Origin Alternative gravity theory Two-body problem Cosmology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zaveri, V.H.: Pioneer anomaly: a drift in the proper time of the spacecraft. arXiv:0709.3690v5[physics. gen-ph]Google Scholar
  2. 2.
    Zaveri, V.H.: Proper time in rotation curves: the MOND CDM connection. arXiv:0805.2233v1[physics.gen-ph]Google Scholar
  3. 3.
    Math Pages online, Reflections on relativity. http://www.mathpages.com/rr/rrtoc.htm
  4. 4.
    Einstein A.: The Meaning of Relativity, 5th edn. Princeton University Press, New Jersey (1955)zbMATHGoogle Scholar
  5. 5.
    Einstein, A.: Sitz. Preuss. Akad. 142 (1916)Google Scholar
  6. 6.
    Broglie L.: Matter and Light, pp. 165–179. W.W. Norton, New York (1939)zbMATHGoogle Scholar
  7. 7.
    Broglie L.: Non-Linear Wave Mechanics, pp. 3–7. Elsevier, New York (1960)zbMATHGoogle Scholar
  8. 8.
    Dirac P.A.M.: The Principles of Quantum Mechanics, 4th edn (revised). Oxford University Press, London (1974)Google Scholar
  9. 9.
    Guth A.H.: Phys. Rev. D 23, 347 (1981)CrossRefADSGoogle Scholar
  10. 10.
    Linde A.: Phys. Lett. B 108, 389 (1982)CrossRefMathSciNetADSGoogle Scholar
  11. 11.
    Guth A.H. Inflation. In: Freedman W.I. (eds). COA Series, vol. 2. Cambridge University Press, Cambridge, astro-ph/0404546Google Scholar
  12. 12.
    Linde, A.: Inflation and String Cosmology, hep-th/0503195Google Scholar
  13. 13.
    Tegmark M. et al.: Phys. Rev. D 69, 103501 (2004) astro-ph/0310723CrossRefADSGoogle Scholar
  14. 14.
    Spergel D.N. et al.: Ap. J. Suppl. 148, 175 (2003) astro-ph/0302209CrossRefADSGoogle Scholar
  15. 15.
    Ellis G.F.R.: Gen. Relativ. Gravit. 38, 1797–1824 (2006)zbMATHCrossRefADSGoogle Scholar
  16. 16.
    Zaveri, V.H.: Periodic invariant, general relativity predictions and origin of universe. http://arxiv.org/abs/0707.4539v5
  17. 17.
    Toth, V.T., Turyshev, S.G.: The Pioneer Anomaly, gr-qc/0603016 (2006)Google Scholar
  18. 18.
    Anderson J.D., Laing P.A., Lau E.L., Liu A.S., Nieto M.M., Turyshev S.G.: Phys. Rev. Lett. 81, 2858–2861 (1998) arXiv:gr-qc/9808081CrossRefADSGoogle Scholar
  19. 19.
    Anderson J.D., Laing P.A., Lau E.L., Liu A.S., Nieto M.M., Turyshev S.G.: Phys. Rev. D 65, 082004 (2002) arXiv:gr-qc/0104064CrossRefADSGoogle Scholar
  20. 20.
    Markwardt, C.B.: Independent confirmation of the Pioneer 10 anomalous acceleration (2002). arXiv:gr-qc/0208046v1Google Scholar
  21. 21.
    Zaveri, V.H.: Orbital period derivative of a binary system using an exact orbital energy equation. arXiv:0707.4544v2[physics.gen-ph]Google Scholar
  22. 22.
    Pitjeva E.V.: High-precision ephemerides of planets-EPM and determination of some astronomical constants. Sol. Syst. Res. 39, 176–186 (2005)CrossRefADSGoogle Scholar
  23. 23.
    Standish, E.M. Jr., Newhall, X.X., Williams, J.G., Folkner, W.M.: JPL Planetary and Lunar Ephemeris, DE403/LE403. Jet Propulsion Laboratory Internal IOM No. 314.10-127 (1995)Google Scholar
  24. 24.
    Moyer T.D. Parts. 1 and 2. Celest. Mech. 23, 33, 57 (1981)Google Scholar
  25. 25.
    Seidelmann, P.K. (ed.): Explanatory Supplement to the Astronomical Almanac. p. 279, University Science Books, Mill Valley, CA (1992)Google Scholar
  26. 26.
    Pound R.V., Rebka G.A.: Phys. Rev. Lett. 4(7), 337–341 (1960)CrossRefADSGoogle Scholar
  27. 27.
    Bertotti B., Iess L., Tortora P.: Lett. Nat. 425, 374–376 (2003)CrossRefGoogle Scholar
  28. 28.
    Pound R.V., Snider J.L.: Phys. Rev. 140, B788–B803 (1965)CrossRefADSGoogle Scholar
  29. 29.
    Vessot R.F.C., Levine M.W., Mattison E.M., Blomberg E.L., Hoffman T.E., Nystrom G.U., Farrel B.F., Decher R., Eby P.B., Baugher C.R., Watts J.W., Teuber D.L., Willis F.D.: Phys. Rev. Lett. 45(26), 2081–2084 (1980)CrossRefADSGoogle Scholar
  30. 30.
    Will, C.M.: Was Einstein right? Testing relativity at the centenary, gr-qc/0504086 (2005)Google Scholar
  31. 31.
    Yang Y.-G.: Pub. of the Yunnan Observatory (ISSN 1001-7526) 90(2), 35–40 (2002)Google Scholar
  32. 32.
    Blanchet, L., Salomon, C., Teyssandier, P., Wolf, P.: gr-qc/0010108 (2001)Google Scholar
  33. 33.
    Iess L., Giampieri G., Anderson J.D., Bertotti B.: Class Quant Grav 16, 1487–1502 (1999)CrossRefADSGoogle Scholar
  34. 34.
    Lebach D.E., Corey B.E., Shapiro I.I., Ratner M.I., Webber J.C., Rogers A.E.E., Davis J.L., Herring T.A.: Phys. Rev. Lett. 75, 1439–1442 (1995)CrossRefADSGoogle Scholar
  35. 35.
    Eubanks, T.M., et al.: BAAS, Abstract #K 11.05 (1997)Google Scholar
  36. 36.
    Turyshev, S.G., Shao, M., Nordtvedt, K.L. Jr.: gr-qc/0401063 (2004)Google Scholar
  37. 37.
    Falcke H., Melia F., Agol E.: Ap. J. 528, 13 (2000)CrossRefADSGoogle Scholar
  38. 38.
    Schunck F.E., Liddle A.R.: Phys. Lett. B 404, 25 (1997)CrossRefADSGoogle Scholar
  39. 39.
    Yuan Y., Narayan R., Rees M.J.: Ap. J. 606, 1112 (2004)CrossRefADSGoogle Scholar
  40. 40.
    Kesden, M., Gair, J., Kamionkowski, M.: astro-ph/0411478 (2004)Google Scholar
  41. 41.
    Kirchbaum, T.P., et al.: In: Bachiller, R., et al. (eds.) Proceedings of the 7th european VLBI network symposium. Toledo, Spain, astro-ph/0411487 (2004)Google Scholar
  42. 42.
    Miyoshi, M.: In: Bachiller, R., et al. (eds.) Proceedings of the 7th european VLBI network symposium, Toledo, Spain, astro-ph/0412289 (2004)Google Scholar
  43. 43.
    Clemence G.M.: Rev. Mod. Phys. 19, 361 (1947)CrossRefADSGoogle Scholar
  44. 44.
    Will, C.M.: The confrontation between general relativity and experiment. Living Rev. Relativ. 4(4), 40–41 [Online Article] (cited on 3 July 2004). http://www.livingreviews.org/Articles/Volume4/2001-4will/ (2001)Google Scholar
  45. 45.
    Shapiro I.I., Pettengill G.H., Ash M.E., Ingalls R.P., Campbell D.B., Dyce R.B.: Phys. Rev. Lett. 28(24), 1594–1597 (1972)CrossRefADSGoogle Scholar
  46. 46.
    Danby, J.M.: Fundamentals of Celestial Mechanics. pp. 61–68. 2nd edn., rev. edn. Willmann-Bell, Richmond (1988)Google Scholar
  47. 47.
    Fernández-Jambrina L., Hoenselaers C.: J. Math. Phys. 42, 839–855 (2001)zbMATHCrossRefMathSciNetADSGoogle Scholar
  48. 48.
    Perlmutter S. et al.: Ap. J. 517, 565 (1999) astro-ph/9812133CrossRefADSGoogle Scholar
  49. 49.
    Riess A.G. et al.: Astron. J. 116, 1009 (1998) astro-ph/9805201CrossRefADSGoogle Scholar
  50. 50.
    Peebles, P.J.E., Ratra, B.: arXiv:astro-ph/0207347v2Google Scholar
  51. 51.
    Padmanabhan, T.: arXiv:hep-th/0212290v2Google Scholar
  52. 52.
    Durrer R., Maartens R.: Gen. Relativ. Gravit. 40, 301–328 (2008)zbMATHCrossRefMathSciNetADSGoogle Scholar
  53. 53.
    Copeland, E.J., Sami, M., Tsujikawa, S.: Int. J. Mod. Phys. D15, 1753–1936 (2006). arXiv:hep-th/0603057v3Google Scholar
  54. 54.
    Tagoshi H. et al.: (The TAMA collaboration). Phys. Rev. D 63, 062001 (2001)CrossRefADSGoogle Scholar
  55. 55.
    Details of LIGO network: http://www.ligo.caltech.edu/
  56. 56.
    Details of VIRGO network: http://www.pg.infn.it/virgo/
  57. 57.
    Details of LISA mission: http://lisa.jpl.nasa.gov/

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.MumbaiIndia

Personalised recommendations