Quantum gravity, field theory and signatures of noncommutative spacetime

Review Article

Abstract

A pedagogical introduction to some of the main ideas and results of field theories on quantized spacetimes is presented, with emphasis on what such field theories may teach us about the problem of quantizing gravity. We examine to what extent noncommutative gauge theories may be regarded as gauge theories of gravity. UV/IR mixing is explained in detail and we describe its relations to renormalization, to gravitational dynamics, and to deformed dispersion relations in models of quantum spacetime of interest in string theory and in doubly special relativity. We also discuss some potential experimental probes of spacetime noncommutativity.

Keywords

Spacetime quantization Noncommutative geometry Noncommutative field theory String theory Doubly special relativity 

References

  1. 1.
    Douglas M.R., Nekrasov N.A.: Noncommutative field theory. Rev. Mod. Phys. 73, 977–1029 (2001) [arXiv:hep-th/0106048]MathSciNetADSGoogle Scholar
  2. 2.
    Szabo R.J.: Quantum field theory on noncommutative spaces. Phys. Rept. 378, 207–299 (2003) [arXiv:hep-th/0109162]MATHADSGoogle Scholar
  3. 3.
    Szabo R.J.: Symmetry, gravity and noncommutativity. Class. Quant. Grav. 23, R199–R242 (2006) [arXiv:hep-th/0606233]MATHADSGoogle Scholar
  4. 4.
    Müller-Hoissen F.: Noncommutative geometries and gravity. AIP Conf. Proc. 977, 12–29 (2008) [arXiv:0710.4418 [gr-qc]]ADSGoogle Scholar
  5. 5.
    Rivasseau V.: Noncommutative renormalization. Sém. Poincaré X, 15–95 (2007) [arXiv:hep-th/0702068]Google Scholar
  6. 6.
    Bietenholz, W.: Cosmic rays and the search for a Lorentz invariance violation. arXiv:0806.3713 [hep-ph]Google Scholar
  7. 7.
    Szabo R.J.: Symmetries and renormalization of noncommutative field theory. AIP Conf. Proc. 917, 146–153 (2007) [arXiv:hep-th/0701224]ADSGoogle Scholar
  8. 8.
    Szabo R.J.: Magnetic backgrounds and noncommutative field theory. Int. J. Mod. Phys. A 19, 1837–1862 (2004) [arXiv:physics/0401142]MATHADSGoogle Scholar
  9. 9.
    Snyder H.S.: Quantized spacetime. Phys. Rev. 71, 38–41 (1947)MATHMathSciNetADSGoogle Scholar
  10. 10.
    Snyder H.S.: The electromagnetic field in quantized spacetime. Phys. Rev. 72, 68–71 (1947)MATHMathSciNetADSGoogle Scholar
  11. 11.
    Yang C.N.: On quantized spacetime. Phys. Rev. 72, 874 (1947)ADSGoogle Scholar
  12. 12.
    Lukierski J., Ruegg H., Nowicki A., Tolstoi V.N.: q-Deformation of Poincaré algebra. Phys. Lett. B 264, 331–338 (1991)MathSciNetADSGoogle Scholar
  13. 13.
    Majid S., Ruegg H.: Bicrossproduct structure of \({\kappa}\) -Poincaré group and noncommutative geometry. Phys. Lett. B 334, 348–354 (1994) [arXiv:hep-th/9405107]MATHMathSciNetADSGoogle Scholar
  14. 14.
    Kowalski-Glikman J., Nowak S.: Noncommutative spacetime of doubly special relativity theories. Int. J. Mod. Phys. D 12, 299–316 (2003) [arXiv:hep-th/0204245]MATHMathSciNetADSGoogle Scholar
  15. 15.
    Amelino-Camelia G.: Relativity in spacetimes with short distance structure governed by an observer independent (Planckian) length scale. Int. J. Mod. Phys. D 11, 35–60 (2002) [arXiv:gr-qc/0012051]MATHMathSciNetADSGoogle Scholar
  16. 16.
    Amelino-Camelia G.: Testable scenario for relativity with minimum length. Phys. Lett. B 510, 255–263 (2001) [arXiv:hep-th/0012238]MATHADSGoogle Scholar
  17. 17.
    Ghosh S.: A lagrangian for DSR particle and the role of noncommutativity. Phys. Rev. D 74, 084019 (2006) [arXiv:hep-th/0608206]MathSciNetADSGoogle Scholar
  18. 18.
    Ghosh S., Pal P.: Deformed special relativity and deformed symmetries in a canonical framework. Phys. Rev. D 75, 105021 (2007) [arXiv:hep-th/0702159]MathSciNetADSGoogle Scholar
  19. 19.
    Magueijo J., Smolin L.: Lorentz invariance with an invariant energy scale. Phys. Rev. Lett. 88, 190403 (2002) [arXiv:hep-th/0112090]ADSGoogle Scholar
  20. 20.
    Magueijo J., Smolin L.: Generalized Lorentz invariance with an invariant energy scale. Phys. Rev. D 67, 044017 (2003) [arXiv:gr-qc/0207085]MathSciNetADSGoogle Scholar
  21. 21.
    Freidel L., Livine E.R.: Effective 3D quantum gravity and noncommutative quantum field theory. Phys. Rev. Lett. 96, 221301 (2006) [arXiv:hep-th/0512113]MathSciNetADSGoogle Scholar
  22. 22.
    Sasakura N.: Spacetime uncertainty relation and Lorentz invariance. J. High Energy Phys 0005, 015 (2000) [arXiv:hep-th/0001161]MathSciNetADSGoogle Scholar
  23. 23.
    Sasai Y., Sasakura N.: The Cutkosky rule of three-dimensional noncommutative field theory in Lie algebraic noncommutative spacetime. J. High Energy Phys. 0906, 013 (2009) [arXiv:0902.3050 [hep-th]]ADSGoogle Scholar
  24. 24.
    Sasai Y., Sasakura N.: Massive particles coupled with 2 + 1-dimensional gravity and noncommutative field theory. arXiv:0902.3502 [hep-th]Google Scholar
  25. 25.
    Oeckl R.: quantum field theory. Commun. Math. Phys. 217, 451–473 (2001) [arXiv:hep-th/9906225]MATHMathSciNetADSGoogle Scholar
  26. 26.
    Sasai Y., Sasakura N.: Braided quantum field theories and their symmetries. Prog. Theor. Phys. 118, 785–814 (2007) [arXiv:0704.0822 [hep-th]]MATHADSGoogle Scholar
  27. 27.
    Doplicher S., Fredenhagen K., Roberts J.E.: Spacetime quantization induced by classical gravity. Phys. Lett. B 331, 39–44 (1994)MathSciNetADSGoogle Scholar
  28. 28.
    Doplicher S., Fredenhagen K., Roberts J.E.: The quantum structure of spacetime at the Planck scale and quantum fields. Commun. Math. Phys. 172, 187–220 (1995) [arXiv:hep-th/0303037]MATHMathSciNetADSGoogle Scholar
  29. 29.
    Peierls R.E.: On the theory of diamagnetism of conduction electrons. Z. Phys. 80, 763–791 (1933)MATHADSGoogle Scholar
  30. 30.
    Dunne G.V., Jackiw R., Trugenberger C.A.: Topological (Chern–Simons) quantum mechanics. Phys. Rev. D 41, 661–666 (1990)MathSciNetADSGoogle Scholar
  31. 31.
    Susskind, L.: The quantum Hall fluid and noncommutative Chern–Simons theory. arXiv:hep-th/0101029Google Scholar
  32. 32.
    Polychronakos A.P.: Quantum Hall states as matrix Chern–Simons theory. J. High Energy Phys. 0104, 011 (2001) [arXiv:hep-th/0103013]MathSciNetADSGoogle Scholar
  33. 33.
    Hellerman S., van Raamsdonk M.: Quantum Hall physics equals noncommutative field theory. J. High Energy Phys. 0110, 039 (2001) [arXiv:hep-th/0103179]ADSGoogle Scholar
  34. 34.
    Duplantier B.: Conformal random geometry. In: Bovier, A., Dunlop, F., den Hollander, F., van Enter, A., Dalibard, J. (eds) Mathematical Statistical Physics, pp. 101–217. Elsevier B.V., Amsterdam (2006) [arXiv:math-ph/0608053]Google Scholar
  35. 35.
    Gorbar E.V., Homayouni S., Miransky V.A.: Chiral dynamics in QED and QCD in a magnetic background and nonlocal noncommutative field theories. Phys. Rev. D 72, 065014 (2005) [arXiv:hep-th/0503028]ADSGoogle Scholar
  36. 36.
    Gross D.J., Mende P.F.: String theory beyond the Planck scale. Nucl. Phys. B 303, 407–454 (1988)MathSciNetADSGoogle Scholar
  37. 37.
    Amati D., Ciafaloni M., Veneziano G.: Can spacetime be probed below the string size?. Phys. Lett. B 216, 41–47 (1989)ADSGoogle Scholar
  38. 38.
    Yoneya T.: On the interpretation of minimal length in string theories. Mod. Phys. Lett. A 4, 1587–1595 (1989)MathSciNetADSGoogle Scholar
  39. 39.
    Yoneya T.: String theory and spacetime uncertainty principle. Progr. Theor. Phys. 103, 1081–1125 (2000) [arXiv:hep-th/0004074]MathSciNetADSGoogle Scholar
  40. 40.
    Douglas M.R., Kabat D.N., Pouliot P., Shenker S.H.: D-branes and short distances in string theory. Nucl. Phys. B 485, 85–127 (1997) [arXiv:hep-th/9608024]MATHMathSciNetADSGoogle Scholar
  41. 41.
    Li M., Yoneya T.: D-particle dynamics and the spacetime uncertainty relation. Phys. Rev. Lett. 78, 1219–1222 (1997) [arXiv:hep-th/9611072]ADSGoogle Scholar
  42. 42.
    Mavromatos N.E., Szabo R.J.: Spacetime quantization from non-abelian D-particle dynamics. Phys. Rev. D 59, 064016 (1999) [arXiv:gr-qc/9807070]MathSciNetADSGoogle Scholar
  43. 43.
    Mavromatos N.E., Szabo R.J.: Matrix D-brane dynamics, logarithmic operators and quantization of noncommutative spacetime. Phys. Rev. D 59, 104018 (1999) [arXiv:hep-th/9808124]MathSciNetADSGoogle Scholar
  44. 44.
    Schomerus V.: D-branes and deformation quantization. J. High Energy Phys. 9906, 030 (1999) [arXiv:hep-th/9903205]MathSciNetADSGoogle Scholar
  45. 45.
    Seiberg N., Witten E.: String theory and noncommutative geometry. J. High Energy Phys. 9909, 032 (1999) [arXiv:hep-th/9908142]MathSciNetADSGoogle Scholar
  46. 46.
    Filk T.: Divergences in a field theory on quantum space. Phys. Lett. B 376, 53–58 (1996)MathSciNetADSGoogle Scholar
  47. 47.
    Ishibashi N., Iso S., Kawai H., Kitazawa Y.: Wilson loops in noncommutative Yang–Mills. Nucl. Phys. B 573, 573–593 (2000) [arXiv:hep-th/9910004]MATHMathSciNetADSGoogle Scholar
  48. 48.
    Minwalla S., van Raamsdonk M., Seiberg N.: Noncommutative perturbative dynamics. J. High Energy Phys. 0002, 020 (2000) [arXiv:hep-th/9912072]MathSciNetADSGoogle Scholar
  49. 49.
    van Raamsdonk M., Seiberg N.: Comments on noncommutative perturbative dynamics. J. High Energy Phys. 0003, 035 (2000) [arXiv:hep-th/0002186]MathSciNetADSGoogle Scholar
  50. 50.
    Sheikh-Jabbari M.M.: Open strings in a B-field background as electric dipoles. Phys. Lett. B 455, 129–134 (1999) [arXiv:hep-th/9901080]MATHMathSciNetADSGoogle Scholar
  51. 51.
    Bigatti D., Susskind L.: Magnetic fields, branes and noncommutative geometry. Phys. Rev. D 62, 066004 (2000) [arXiv:hep-th/9908056]MathSciNetADSGoogle Scholar
  52. 52.
    Rey S.-J.: Exact answers to approximate questions: noncommutative dipoles, open Wilson lines and UV/IR duality. In: Bachas, C., Bilal, A., Douglas, M.R., Nekrasov, N.A., David, F. (eds) Gravity, Gauge Theories, and Strings, pp. 587–609. Springer, Berlin (2002) [arXiv:hep-th/0207108]Google Scholar
  53. 53.
    Langmann E., Szabo R.J.: Duality in scalar field theory on noncommutative phase spaces. Phys. Lett. B 533, 168–177 (2002) [arXiv:hep-th/0202039]MATHMathSciNetADSGoogle Scholar
  54. 54.
    Grosse H., Wulkenhaar R.: Renormalisation of \({\phi^4}\) theory on noncommutative \({\mathbb {R}^2}\) in the matrix base. J. High Energy Phys. 0312, 019 (2003) [arXiv:hep-th/0307017]MathSciNetADSGoogle Scholar
  55. 55.
    Grosse H., Wulkenhaar R.: Renormalization of \({\phi^4}\) -theory on noncommutative \({\mathbb {R}^4}\) in the matrix base. Commun. Math. Phys. 256, 305–374 (2005) [arXiv:hep-th/0401128]MATHMathSciNetADSGoogle Scholar
  56. 56.
    Langmann E., Szabo R.J., Zarembo K.: Exact solution of noncommutative field theory in background magnetic fields. Phys. Lett. B 569, 95–101 (2003) [arXiv:hep-th/0303082]MATHMathSciNetADSGoogle Scholar
  57. 57.
    Langmann E., Szabo R.J., Zarembo K.: Exact solution of quantum field theory on noncommutative phase spaces. J. High Energy Phys. 0401, 017 (2004) [arXiv:hep-th/0308043]MathSciNetADSGoogle Scholar
  58. 58.
    Grosse H., Wulkenhaar R.: The beta-function in duality covariant noncommutative \({\phi^4}\) -theory. Eur. Phys. J. C 35, 277–282 (2004) [arXiv:hep-th/0402093]MathSciNetADSGoogle Scholar
  59. 59.
    Disertori M., Gurau R., Magnen J., Rivasseau V.: Vanishing of beta-function of noncommutative \({\phi_4^4}\) -theory to all orders. Phys. Lett. B 649, 95–102 (2007) [arXiv:hep-th/0612251]MathSciNetADSGoogle Scholar
  60. 60.
    Fischer A., Szabo R.J.: Duality covariant quantum field theory on noncommutative Minkowski space. J. High Energy Phys. 0902, 031 (2009) [arXiv:0810.1195 [hep-th]]MathSciNetADSGoogle Scholar
  61. 61.
    Grosse H., Wohlgenannt M.: On \({\kappa}\) -deformation and UV/IR mixing. Nucl. Phys. B 748, 473–484 (2006) [arXiv:hep-th/0507030]MATHADSGoogle Scholar
  62. 62.
    Bieliavsky P., Gurau R., Rivasseau, V.: Noncommutative field theory on rank one symmetric spaces. arXiv:0806.4255 [hep-th]Google Scholar
  63. 63.
    Lizzi F., Szabo R.J., Zampini A.: Geometry of the gauge algebra in noncommutative Yang–Mills theory. J. High Energy Phys. 0108, 032 (2001) [arXiv:hep-th/0107115]MathSciNetADSGoogle Scholar
  64. 64.
    Armoni A.: Comments on perturbative dynamics of noncommutative Yang-Mills theory. Nucl. Phys. B 593, 229–242 (2001) [arXiv:hep-th/0005208]MATHMathSciNetADSGoogle Scholar
  65. 65.
    Hayakawa M.: Perturbative analysis on infrared aspects of noncommutative QED on \({\mathbb {R}^4}\) . Phys. Lett. B 478, 394–400 (2000) [arXiv:hep-th/9912094]MATHMathSciNetADSGoogle Scholar
  66. 66.
    Alishahiha M., Oz Y., Sheikh-Jabbari M.M.: Supergravity and large N noncommutative field theories. J. High Energy Phys. 9911, 007 (1999) [arXiv:hep-th/9909215]MathSciNetADSGoogle Scholar
  67. 67.
    Bietenholz W., Hofheinz F., Nishimura J.: A non-perturbative study of gauge theory on a noncommutative plane. J. High Energy Phys. 0209, 009 (2002) [arXiv:hep-th/0203151]MathSciNetADSGoogle Scholar
  68. 68.
    Matusis A., Susskind L., Toumbas N.: The IR/UV connection in the noncommutative gauge theories. J. High Energy Phys. 0012, 002 (2000) [arXiv:hep-th/0002075]MathSciNetADSGoogle Scholar
  69. 69.
    Calmet X., Jurco B., Schupp P., Wess J., Wohlgenannt M.: The standard model on noncommutative spacetime. Eur. Phys. J. C 23, 363–376 (2002) [arXiv:hep-th/0111115]MATHMathSciNetADSGoogle Scholar
  70. 70.
    Gross D.J., Hashimoto A., Itzhaki N.: Observables of noncommutative gauge theories. Adv. Theor. Math. Phys. 4, 893–928 (2000) [arXiv:hep-th/0008075]MATHMathSciNetGoogle Scholar
  71. 71.
    Langmann E., Szabo R.J.: Teleparallel gravity and dimensional reductions of noncommutative gauge theory. Phys. Rev. D 64, 104019 (2001) [arXiv:hep-th/0105094]MathSciNetADSGoogle Scholar
  72. 72.
    Chaichian M., Oksanen M., Tureanu A., Zet G.: Gauging the twisted Poincaré symmetry as noncommutative theory of gravitation. Phys. Rev. D 79, 044016 (2009) [arXiv:0807.0733 [hep-th]]MathSciNetADSGoogle Scholar
  73. 73.
    Marculescu S., Ruiz Ruiz F.: Seiberg–Witten maps for SO(1,3) gauge invariance and deformations of gravity . Phys. Rev. D 79, 025004 (2009) [arXiv:0808.2066 [hep-th]]MathSciNetADSGoogle Scholar
  74. 74.
    Chamseddine A.H.: \({SL(2, \mathbb {C})}\) gravity with complex vierbein and its noncommutative extension. Phys. Rev. D 69, 024015 (2004) [arXiv:hep-th/0309166]MathSciNetADSGoogle Scholar
  75. 75.
    Aschieri P., Castellani L.: Noncommutative supergravity in D = 3 and D = 4. J. High Energy Phys. 0906, 087 (2009) [arXiv:0902.3823 [hep-th]]ADSGoogle Scholar
  76. 76.
    Madore J., Schraml S., Schupp P., Wess J.: Gauge theory on noncommutative spaces. Eur. Phys. J. C 16, 161–167 (2000) [arXiv:hep-th/0001203]MathSciNetADSGoogle Scholar
  77. 77.
    Aoki H., Ishibashi N., Iso S., Kawai H., Kitazawa Y., Tada T.: Noncommutative Yang–Mills in IIB matrix model. Nucl. Phys. B 565, 176–192 (2000) [arXiv:hep-th/9908141]MATHMathSciNetADSGoogle Scholar
  78. 78.
    Ambjørn J., Makeenko Y., Nishimura J., Szabo R.J.: Finite N matrix models of noncommutative gauge theory. J. High Energy Phys. 9911, 029 (1999) [arXiv:hep-th/9911041]ADSGoogle Scholar
  79. 79.
    Ambjørn J., Makeenko Y., Nishimura J., Szabo R.J.: Non-perturbative dynamics of noncommutative gauge theory. Phys. Lett. B 480, 399–408 (2000) [arXiv:hep-th/0002158]MathSciNetADSGoogle Scholar
  80. 80.
    Ambjørn J., Makeenko Y., Nishimura J., Szabo R.J.: Lattice gauge fields and discrete noncommutative Yang–Mills theory. J. High Energy Phys. 0005, 023 (2000) [arXiv:hep-th/0004147]ADSGoogle Scholar
  81. 81.
    Bietenzholz W., Bigarini A., Hofheinz F., Nishimura J., Susaki Y., Volkholz J.: Numerical results for U(1) gauge theory on 2D and 4D noncommutative spaces. Fortschr. Phys. 53, 418–425 (2005) [arXiv:hep-th/0501147]MathSciNetGoogle Scholar
  82. 82.
    Rivelles V.O.: Noncommutative field theories and gravity. Phys. Lett. B 558, 191–196 (2003) [arXiv:hep-th/0212262]MATHMathSciNetADSGoogle Scholar
  83. 83.
    Yang H.S.: Exact Seiberg–Witten map and induced gravity from noncommutativity. Mod. Phys. Lett. A 21, 2637–2647 (2006) [arXiv:hep-th/0402002]MATHADSGoogle Scholar
  84. 84.
    Yang H.S.: On the correspondence between noncommutative field theory and gravity. Mod. Phys. Lett. A 22, 1119–1132 (2007) [arXiv:hep-th/0612231]MATHADSGoogle Scholar
  85. 85.
    Steinacker H.: Emergent gravity from noncommutative gauge theory. J. High Energy Phys. 0712, 049 (2007) [arXiv:0708.2426 [hep-th]]MathSciNetADSGoogle Scholar
  86. 86.
    Steinacker H.: Emergent gravity and noncommutative branes from Yang–Mills matrix models. Nucl. Phys. B 810, 1–39 (2009) [arXiv:0806.2032 [hep-th]]MathSciNetADSGoogle Scholar
  87. 87.
    Grosse H., Steinacker H., Wohlgenannt M.: Emergent gravity, matrix models and UV/IR mixing. J. High Energy Phys. 0804, 023 (2008) [arXiv:0802.0973 [hep-th]]MathSciNetADSGoogle Scholar
  88. 88.
    van Raamsdonk M.: The meaning of infrared singularities in noncommutative gauge theories. J. High Energy Phys. 0111, 006 (2001) [arXiv:hep-th/0110093]Google Scholar
  89. 89.
    Armoni A., Lopez E.: UV/IR mixing via closed strings and tachyonic instabilities. Nucl. Phys. B 632, 240–256 (2002) [arXiv:hep-th/0110113]MATHMathSciNetADSGoogle Scholar
  90. 90.
    Das S.R., Rey S.-J.: Open Wilson lines in noncommutative gauge theory and tomography of holographic dual supergravity. Nucl. Phys. B 590, 453–470 (2000) [arXiv:hep-th/0008042]MATHMathSciNetADSGoogle Scholar
  91. 91.
    Liu H.: ⋆-Trek II: ⋆n operations, open Wilson lines and the Seiberg–Witten map. Nucl. Phys. B 614, 305–329 (2001) [arXiv:hep-th/0011125]MATHADSGoogle Scholar
  92. 92.
    Das S.R., Trivedi S.P.: Supergravity couplings to noncommutative branes, open Wilson lines and generalized star products. J. High Energy Phys. 0102, 046 (2001) [arXiv:hep-th/0011131]MathSciNetADSGoogle Scholar
  93. 93.
    Dhar A., Kitazawa Y.: Noncommutative gauge theory, open Wilson lines and closed strings. J. High Energy Phys. 0108, 044 (2001) [arXiv:hep-th/0106217]MathSciNetADSGoogle Scholar
  94. 94.
    Armoni A., Lopez E., Uranga A.M.: Closed string tachyons and noncommutative instabilities. J. High Energy Phys. 0302, 020 (2003) [arXiv:hep-th/0301099]MathSciNetADSGoogle Scholar
  95. 95.
    Sarkar S., Sathiapalan B.: Aspects of open-closed duality in a background B-field. J. High Energy Phys. 0505, 062 (2005) [arXiv:hep-th/0503009]MathSciNetADSGoogle Scholar
  96. 96.
    Ishibashi N., Iso S., Kawai H., Kitazawa Y.: String scale in noncommutative Yang–Mills. Nucl. Phys. B 583, 159–181 (2000) [arXiv:hep-th/0004038]MATHMathSciNetADSGoogle Scholar
  97. 97.
    Kitazawa Y., Nagaoka S.: Graviton propagators in supergravity and noncommutative gauge theory. Phys. Rev. D 75, 046007 (2007) [arXiv:hep-th/0611056]ADSGoogle Scholar
  98. 98.
    Chaichian M., Kulish P.P., Nishijima K., Tureanu A.: On a Lorentz-invariant interpretation of noncommutative spacetime and its implications on noncommutative QFT. Phys. Lett. B 604, 98–102 (2004) [arXiv:hep-th/0408069]MathSciNetADSGoogle Scholar
  99. 99.
    Chaichian M., Presnajder P., Tureanu A.: New concept of relativistic invariance in NC spacetime: Twisted Poincaré symmetry and its implications. Phys. Rev. Lett. 94, 151602 (2005) [arXiv:hep-th/0409096]ADSGoogle Scholar
  100. 100.
    Grosse H., Lechner G.: Wedge-local quantum fields and noncommutative Minkowski space. J. High Energy Phys. 0711, 012 (2007) [arXiv:0706.3992 [hep-th]]MathSciNetADSGoogle Scholar
  101. 101.
    Grosse H., Lechner G.: Noncommutative deformations of Wightman quantum field theories. J. High Energy Phys. 0809, 131 (2008) [arXiv:0808.3459 [math-ph]]MathSciNetADSGoogle Scholar
  102. 102.
    Akofor E., Balachandran A.P., Joseph A.: fields on the Grönewold–Moyal plane. Int. J. Mod. Phys. A 23, 1637–1677 (2008) [arXiv:0803.4351 [hep-th]]MATHMathSciNetADSGoogle Scholar
  103. 103.
    Carroll S.M., Harvey J.A., Kostelecky V.A., Lane C.D., Okamoto T.: Noncommutative field theory and Lorentz violation. Phys. Rev. Lett. 87, 141601 (2001) [arXiv:hep-th/0105082]MathSciNetADSGoogle Scholar
  104. 104.
    Buric M., Latas D., Radovanovic V., Trampetic J.: Nonzero Z →γ γ decays in the renormalizable gauge sector of the noncommutative standard model. Phys. Rev. D 75, 097701 (2007) [arXiv:hep-ph/0611299]ADSGoogle Scholar
  105. 105.
    Balachandran A.P., Jo S.G.: Z 0 → 2γ and the twisted coproduct of the Poincaré group. Int. J. Mod. Phys. A 22, 6133–6146 (2007) [arXiv:0704.0921 [hep-th]]MATHMathSciNetADSGoogle Scholar
  106. 106.
    Tamarit C., Trampetic J.: Noncommutative fermions and quarkonia decays. Phys. Rev. D 79, 025020 (2009) [arXiv:0812.1731 [hep-th]]ADSGoogle Scholar
  107. 107.
    Chaichian M., Sheikh-Jabbari M.M., Tureanu A.: Hydrogen atom spectrum and the Lamb shift in noncommutative QED. Phys. Rev. Lett. 86, 2716–2719 (2001) [arXiv:hep-th/0010175]ADSGoogle Scholar
  108. 108.
    Amelino-Camelia G., Mandanici G., Yoshida K.: On the IR/UV mixing and experimental limits on the parameters of canonical noncommutative spacetimes. J. High Energy Phys. 0401, 037 (2004) [arXiv:hep-th/0209254]MathSciNetADSGoogle Scholar
  109. 109.
    Helling R.C., You J.: Macroscopic screening of Coulomb potentials from UV/IR mixing. J. High Energy Phys. 0806, 067 (2008) [arXiv:0707.1885 [hep-th]]ADSGoogle Scholar
  110. 110.
    Akofor E., Balachandran A.P., Joseph A., Pekowsky L., Qureshi B.A.: Constraints from CMB on spacetime noncommutativity and causality violation. Phys. Rev. D 79, 063004 (2009) [arXiv: 0806.2458 [astro-ph]]ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of MathematicsHeriot-Watt UniversityEdinburghUK
  2. 2.Maxwell Institute for Mathematical SciencesEdinburghUK

Personalised recommendations