General Relativity and Gravitation

, Volume 42, Issue 3, pp 567–599 | Cite as

Dark energy as a mirage

Research Article

Abstract

Motivated by the observed cosmic matter distribution, we present the following conjecture: due to the formation of voids and opaque structures, the average matter density on the path of the light from the well-observed objects changes from ΩM ≃ 1 in the homogeneous early universe to ΩM ≃ 0 in the clumpy late universe, so that the average expansion rate increases along our line of sight from EdS expansion Ht ≃ 2/3 at high redshifts to free expansion Ht ≃ 1 at low redshifts. To calculate the modified observable distance–redshift relations, we introduce a generalized Dyer–Roeder method that allows for two crucial physical properties of the universe: inhomogeneities in the expansion rate and the growth of the nonlinear structures. By treating the transition redshift to the void-dominated era as a free parameter, we find a phenomenological fit to the observations from the CMB anisotropy, the position of the baryon oscillation peak, the magnitude–redshift relations of type Ia supernovae, the local Hubble flow and the nucleosynthesis, resulting in a concordant model of the universe with 90% dark matter, 10% baryons, no dark energy, 15 Gyr as the age of the universe and a natural value for the transition redshift z0 = 0.35. Unlike a large local void, the model respects the cosmological principle, further offering an explanation for the late onset of the perceived acceleration as a consequence of the forming nonlinear structures. Additional tests, such as quantitative predictions for angular deviations due to an anisotropic void distribution and a theoretical derivation of the model, can vindicate or falsify the interpretation that light propagation in voids is responsible for the perceived acceleration.

Keywords

Inhomogeneous cosmological models Dark energy Cosmology Gravitation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zel’dovich Ya.B.: Observations in a universe homogeneous in the mean. Sov. Ast. 8, 13 (1964)MathSciNetADSGoogle Scholar
  2. 2.
    Bertotti B.: The luminosity of distant galaxies. Proc. R. Soc. Lond. A 294, 195 (1966)CrossRefADSGoogle Scholar
  3. 3.
    Gunn J.E.: On the propagation of light in inhomogeneous cosmologies. I. Mean Eff. Astrophys. J. 150, 737 (1967)CrossRefADSGoogle Scholar
  4. 4.
    Kantowski R.: Corrections in the luminosity-redshift relations of the homogeneous friedmann models. Astrophys. J. 155, 89 (1969)CrossRefADSGoogle Scholar
  5. 5.
    Dyer C.C., Roeder R.C.: The distance–redshift relation for universes with no intergalactic medium. Astrophys. J. 174, L115 (1972)CrossRefADSGoogle Scholar
  6. 6.
    Dyer C.C., Roeder R.C.: Distance–redshift relations for universes with some intergalactic medium. Astrophys. J. 180, L31 (1973)CrossRefADSGoogle Scholar
  7. 7.
    Hoyle F., Vogeley M.S.: Voids in the 2dF galaxy redshift survey. Astrophys. J. 607, 751 (2004) [arXiv:astro-ph/0312533]CrossRefADSGoogle Scholar
  8. 8.
    Gott J.R.I. et al.: A map of the universe. Astrophys. J. 624, 463 (2005) [arXiv:astro-ph/0310571]CrossRefADSGoogle Scholar
  9. 9.
    Tikhonov A.V.: Voids in the SDSS galaxy survey. Astron. Lett. 33, 499 (2007) [arXiv:0707.4283 [astro-ph]]CrossRefADSGoogle Scholar
  10. 10.
    von Benda-Beckmann, A.M., Mueller, V.: Void statistics and void galaxies in the 2dFGRS. arXiv:0710.2783 [astro-ph]Google Scholar
  11. 11.
    Einasto M., Einasto J., Tago E., Dalton G.B., Andernach H.: The structure of the universe traced by rich clusters of galaxies. Mon. Not. R. Astron. Soc. 269, 301 (1994)ADSGoogle Scholar
  12. 12.
    Rudnick L., Brown S., Williams L.R.: Extragalactic radio sources and the WMAP cold spot. Astrophys. J. 671, 40 (2007) [arXiv:0704.0908 [astro-ph]]CrossRefADSGoogle Scholar
  13. 13.
    Copeland E.J., Sami M., Tsujikawa S.: Dynamics of dark energy. Int. J. Mod. Phys. D 15, 1753 (2006) [arXiv:hep-th/0603057]CrossRefMathSciNetADSMATHGoogle Scholar
  14. 14.
    Straumann N.: Dark energy: recent developments. Mod. Phys. Lett. A 21, 1083 (2006) [arXiv:hep-ph/0604231]CrossRefMathSciNetADSGoogle Scholar
  15. 15.
    Sahni V., Starobinsky A.: Reconstructing dark energy. Int. J. Mod. Phys. D 15, 2105 (2006) [arXiv:astro-ph/0610026]CrossRefMathSciNetADSMATHGoogle Scholar
  16. 16.
    Riess, A.G., et al. [Supernova Search Team Collaboration]: Type Ia supernova discoveries at z > 1 from the Hubble Space telescope: evidence for past deceleration and constraints on dark energy evolution. Astrophys. J. 607, 665 (2004) [arXiv:astro-ph/0402512]Google Scholar
  17. 17.
    Riess A.G. et al.: New hubble space telescope discoveries of type Ia Supernovae at z > 1: narrowing constraints on the early behavior of dark energy. Astrophys. J. 659, 98 (2007) [arXiv:astro-ph/0611572]CrossRefADSGoogle Scholar
  18. 18.
    Eisenstein D.J. et al.: Detection of the Baryon acoustic peak in the large-scale correlation function of sdss luminous red galaxies. Astrophys. J. 633, 560 (2005) [arXiv:astro-ph/0501171]CrossRefADSGoogle Scholar
  19. 19.
    Spergel, D.N., et al. [WMAP Collaboration]: Wilkinson microwave anisotropy probe (WMAP) three year results: implications for cosmology. Astrophys. J. Suppl. 170, 377 (2007) [arXiv:astro-ph/0603449]Google Scholar
  20. 20.
    Schwarz, D.J.: Accelerated expansion without dark energy. arXiv:astro-ph/0209584Google Scholar
  21. 21.
    Wetterich C.: Can structure formation influence the cosmological evolution? Phys. Rev. D 67, 043513 (2003) [arXiv:astro-ph/0111166]CrossRefADSGoogle Scholar
  22. 22.
    Räsänen S.: Dark energy from backreaction. JCAP 0402, 003 (2004) [arXiv:astro-ph/0311257]Google Scholar
  23. 23.
    Räsänen S.: Accelerated expansion from structure formation. JCAP 0611, 003 (2006) [arXiv:astro-ph/0607626]Google Scholar
  24. 24.
    Räsänen S.: Evaluating backreaction with the peak model of structure formation. JCAP 0804, 026 (2008) [arXiv:0801.2692 [astro-ph]]Google Scholar
  25. 25.
    Räsänen S.: Light propagation in statistically homogeneous and isotropic dust universes. JCAP 0902, 011 (2009) [arXiv:0812.2872[astro-ph]]Google Scholar
  26. 26.
    Buchert T.: Dark energy from structure—a status report. Gen. Relativ. Gravit. 40, 467 (2008) [arXiv:0707.2153 [gr-qc]]CrossRefMathSciNetADSMATHGoogle Scholar
  27. 27.
    Ishibashi A., Wald R.M.: Can the acceleration of our universe be explained by the effects of inhomogeneities? Class. Quant. Grav. 23, 235 (2006) [arXiv:gr-qc/0509108]CrossRefMathSciNetADSMATHGoogle Scholar
  28. 28.
    Paranjape A., Singh T.P.: Cosmic inhomogeneities and the average cosmological dynamics. Phys. Rev. Lett. 101, 181101 (2008) [arXiv:0806.3497 [astro-ph]]CrossRefADSGoogle Scholar
  29. 29.
    Kolb E.W., Marra V., Matarrese S.: On the description of our cosmological spacetime as a perturbed conformal Newtonian metric and implications for the backreaction proposal for the accelerating universe. Phys. Rev. D 78, 103002 (2008) [arXiv:0807.0401 [astro-ph]]CrossRefADSGoogle Scholar
  30. 30.
    Shirokov M.F., Fisher I.Z.: Isotropic space with discrete gravitational-field sources. on the theory of a nonhomogeneous isotropic universe. Sov. Ast. 6, 699 (1963)ADSGoogle Scholar
  31. 31.
    Ellis G.F.R.: Relativistic cosmology: Its nature, aims and problems. In: Bertotti, B., Felice, F., Pascolini, A. (eds) General Relativity and Gravitation, pp. 215. Reidel D Publishing Company, Dordrecht (1984)Google Scholar
  32. 32.
    Ellis G.F.R., Stoeger W.: The fitting problem in cosmology. Class. Quant. Grav. 4, 1697 (1987)CrossRefMathSciNetADSMATHGoogle Scholar
  33. 33.
    Ellis G.F.R.: 83 years of general relativity and cosmology: progress and problems. Class. Quant. Grav. 16, A37 (1999)CrossRefADSMATHGoogle Scholar
  34. 34.
    Ellis G.F.R., Buchert T.: The universe seen at different scales. Phys. Lett. A 347, 38 (2005) [arXiv:gr-qc/0506106]CrossRefMathSciNetADSGoogle Scholar
  35. 35.
    Buchert T.: On average properties of inhomogeneous fluids in general relativity. I: Dust cosmologies. Gen. Relativ. Gravit. 32, 105 (2000) [arXiv:gr-qc/9906015]CrossRefMathSciNetADSMATHGoogle Scholar
  36. 36.
    Mattsson T., Ronkainen M.: Exploiting scale dependence in cosmological averaging. JCAP 0802, 004 (2008) [arXiv:0708.3673 [astro-ph]]ADSGoogle Scholar
  37. 37.
    Apostolopoulos P.S., Brouzakis N., Tetradis N., Tzavara E.: Cosmological acceleration and gravitational collapse. JCAP 0606, 009 (2006) [arXiv:astro-ph/0603234]ADSGoogle Scholar
  38. 38.
    Kai T., Kozaki H., Nakao K.I., Nambu Y., Yoo C.M.: Can inhomogeneties accelerate the cosmic volume expansion? Prog. Theor. Phys. 117, 229 (2007) [arXiv:gr-qc/0605120]CrossRefMathSciNetADSMATHGoogle Scholar
  39. 39.
    Paranjape A., Singh T.P.: The possibility of cosmic acceleration via spatial averaging in Lemaître–Tolman–Bondi models. Class. Quant. Gravit. 23, 6955 (2006) [arXiv:astro-ph/0605195]CrossRefMathSciNetADSMATHGoogle Scholar
  40. 40.
    Wiltshire D.L.: Cosmic clocks, cosmic variance and cosmic averages. New J. Phys. 9, 377 (2007) [arXiv:gr-qc/0702082]CrossRefADSGoogle Scholar
  41. 41.
    Wiltshire D.L.: Exact solution to the averaging problem in cosmology. Phys. Rev. Lett. 99, 251101 (2007) [arXiv:0709.0732 [gr-qc]]CrossRefADSGoogle Scholar
  42. 42.
    Leith B.M., Ng S.C.C., Wiltshire D.L.: Gravitational energy as dark energy: concordance of cosmological tests. Astrophys. J. 672, L91 (2008) [arXiv:0709.2535 [astro-ph]]CrossRefADSGoogle Scholar
  43. 43.
    Wiltshire D.L.: Gravitational energy and cosmic acceleration. Int. J. Mod. Phys. D 17, 641 (2008) [arXiv:0712.3982 [gr-qc]]CrossRefMathSciNetADSMATHGoogle Scholar
  44. 44.
    Wiltshire, D.L.: Dark energy without dark energy. arXiv:0712.3984 [astro-ph]Google Scholar
  45. 45.
    Wiltshire D.L.: Cosmological equivalence principle and the weak-field limit. Phys. Rev. D 78, 084032 (2008) [arXiv:0809.1183 [gr-qc]]CrossRefMathSciNetADSGoogle Scholar
  46. 46.
    Smith, K.M., Huterer, D.: No evidence for the cold spot in the NVSS radio survey. arXiv:0805.2751 [astro-ph]Google Scholar
  47. 47.
    Moffat, J.W., Tatarski, D.C.: Cosmological observations in a local void. arXiv:astro-ph/9407036Google Scholar
  48. 48.
    Zehavi I., Riess A.G., Kirshner R.P., Dekel A.: A local hubble bubble from SNe Ia? Astrophys. J. 503, 483 (1998) [arXiv:astro-ph/9802252]CrossRefADSGoogle Scholar
  49. 49.
    Tomita K.: A local void and the accelerating universe. Mon. Not. R. Astron. Soc. 326, 287 (2001) [arXiv:astro-ph/0011484]CrossRefADSGoogle Scholar
  50. 50.
    Frith W.J., Metcalfe N., Shanks T.: New H-band galaxy number counts: a large local hole in the galaxy distribution? Mon. Not. R. Astron. Soc. 371, 1601 (2006) [arXiv:astro-ph/0509875]CrossRefADSGoogle Scholar
  51. 51.
    Lemaître, G.: Annales Soc. Sci. Brux. Ser. I Sci. Math. Astron. Phys. A 53 51 (1933) (For an English translation, see: G. Lemaître, The Expanding Universe. Gen. Relativ. Gravit. 29, 641 (1997))Google Scholar
  52. 52.
    Plebanski J., Krasinski A.: An Introduction to General Relativity and Cosmology. Cambridge University Press, London (2006)MATHGoogle Scholar
  53. 53.
    Mustapha N., Hellaby C., Ellis G.F.R.: Large scale inhomogeneity versus source evolution: can we distinguish them observationally? Mon. Not. R. Astron. Soc. 292, 817 (1997) [arXiv:gr-qc/9808079]ADSGoogle Scholar
  54. 54.
    Celerier M.N.: Do we really see a cosmological constant in the supernovae data? Astron. Astrophys. 353, 63 (2000) [arXiv:astro-ph/9907206]ADSGoogle Scholar
  55. 55.
    Alnes H., Amarzguioui M., Grøn Ø.: An inhomogeneous alternative to dark energy? Phys. Rev. D 73, 083519 (2006) [arXiv:astro-ph/0512006]CrossRefADSGoogle Scholar
  56. 56.
    Enqvist K., Mattsson T.: The effect of inhomogeneous expansion on the supernova observations. JCAP 0702, 019 (2007) [arXiv:astro-ph/0609120]ADSGoogle Scholar
  57. 57.
    Iguchi H., Nakamura T., Nakao K.I.: Is dark energy the only solution to the apparent acceleration of the present universe? Prog. Theor. Phys. 108, 809 (2002) [arXiv:astro-ph/0112419]CrossRefADSMATHGoogle Scholar
  58. 58.
    Biswas T., Mansouri R., Notari A.: Nonlinear structure formation and apparent acceleration: an investigation. JCAP 0712, 017 (2007) [arXiv:astro-ph/0606703]ADSGoogle Scholar
  59. 59.
    Tanimoto M., Nambu Y.: Luminosity distance-redshift relation for the LTB solution near the center. Class. Quant. Grav. 24, 3843 (2007) [arXiv:gr-qc/0703012]CrossRefMATHGoogle Scholar
  60. 60.
    Alexander, S., Biswas, T., Notari, A., Vaid, D.: Local void vs dark energy: confrontation with WMAP and Type Ia Supernovae. arXiv:0712.0370 [astro-ph]Google Scholar
  61. 61.
    Garcia-Bellido J., Haugboelle T.: Confronting Lemaître–Tolman–Bondi models with observationalcosmology. JCAP 0804, 003 (2008) [arXiv:0802.1523 [astro-ph]]ADSGoogle Scholar
  62. 62.
    Garcia-Bellido, J., Haugboelle, T.: The radial BAO scale and cosmic shear, a new observable for inhomogeneous cosmologies. arXiv:0810.4939 [astro-ph].Google Scholar
  63. 63.
    Zibin J.P.: Scalar perturbations on Lemaître–Tolman–Bondi spacetimes. Phys. Rev.D 78, 043504 (2008) [ar-Xiv:0804.1787[astro-ph]]CrossRefMathSciNetADSGoogle Scholar
  64. 64.
    Alnes H., Amarzguioui M.: CMB anisotropies seen by an off-center observer in a spherically symmetric inhomogeneous universe. Phys. Rev. D 74, 103520 (2006) [arXiv:astro-ph/0607334]CrossRefADSGoogle Scholar
  65. 65.
    Pain, R., et al. [Supernova cosmology project collaboration]: The distant Type Ia supernova rate. Astrophys. J. 577, 120 (2002) [arXiv:astro-ph/0205476]Google Scholar
  66. 66.
    Tonry J.L.: Supernovae and dark energy. Phys. Scr. T 117, 11–16 (2005)CrossRefADSGoogle Scholar
  67. 67.
    Weinberg S.: Apparent luminosities in a locally inhomogeneous universe. Astrophys. J. 208, L1–L3 (1976)CrossRefMathSciNetADSGoogle Scholar
  68. 68.
    Ellis G.F.R., Bassett B.A., Dunsby P.K.S.: Lensing and caustic effects on cosmological distances. Class. Quant. Grav. 15, 2345 (1998) [arXiv:gr-qc/9801092]CrossRefMathSciNetADSMATHGoogle Scholar
  69. 69.
    Linder E.V.: Light propagation in generalized Friedmann universes. Astron. Astrophys. 206, 190 (1988)ADSGoogle Scholar
  70. 70.
    Kantowski R., Vaughan T., Branch D.: The effects of inhomogeneities on evaluating the deceleration parameter q0. Astrophys. J. 447, 35 (1995) [arXiv:astro-ph/9511108]CrossRefADSGoogle Scholar
  71. 71.
    Kantowski, R.: The effects of inhomogeneities on evaluating the mass parameter Ωm and the cosmological constant Λ. arXiv:astro-ph/9802208Google Scholar
  72. 72.
    Kantowski R.: The Lamé equation for distance-redshift in partially filled Beam Friedmann- Lemaître–Robertson-Walker cosmology. Phys. Rev. D 68, 123516 (2003) [arXiv:astro-ph/0308419]CrossRefADSGoogle Scholar
  73. 73.
    Sachs R.K.: Gravitational waves in general relativity. VI. The outgoing radiation condition. Proc. R. Soc. Lond. A 264, 309 (1961)CrossRefMathSciNetADSMATHGoogle Scholar
  74. 74.
    Etherington I.M.H.: On the definition of distance in general relativity. Philos. Mag. ser. 7(15), 761 (1933)ADSGoogle Scholar
  75. 75.
    Ellis G.F.R.: Relativistic cosmology. In: Sachs, R.K. (eds) Proceeding of School Enrico Fermi, General Relativity and Cosmology, p. 104. Academic Press, New York (1971)Google Scholar
  76. 76.
    Santos R.C., Lima J.A.S.: Clustering, angular size and dark energy. Phys. Rev. D 77, 083505 (2008) [ar-Xiv:0803.1865[astro-ph]]CrossRefADSGoogle Scholar
  77. 77.
    Peacock J.A.: Cosmological Physics. Cambridge University Press, London (1999)MATHGoogle Scholar
  78. 78.
    Springel V. et al.: Simulating the joint evolution of quasars, galaxies and their large-scale distribution. Nature 435, 629 (2005) [arXiv:astro-ph/0504097]CrossRefADSGoogle Scholar
  79. 79.
    Sarkar S.: Is the evidence for dark energy secure? Gen. Relat. Gravit. 40, 269 (2008) [arXiv:0710.53071191 [astro-ph]]CrossRefADSMATHGoogle Scholar
  80. 80.
    Blanchard A., Douspis M., Rowan-Robinson M., Sarkar S.: An alternative to the cosmological ‘concordance model’. Astron. Astrophys. 412, 35 (2003) [arXiv:astro-ph/0304237]CrossRefADSMATHGoogle Scholar
  81. 81.
    Blanchard A., Douspis M., Rowan-Robinson M., Sarkar S.: Large-scale galaxy correlations as a test for dark energy. Astron. Astrophys. 449, 925 (2006) [arXiv:astro-ph/0512085]CrossRefADSGoogle Scholar
  82. 82.
    Hunt P., Sarkar S.: Multiple inflation and the WMAP ‘glitches’. Phys. Rev. D 70, 103518 (2004) [ar-Xiv:astro-ph/0408138]CrossRefADSGoogle Scholar
  83. 83.
    Hunt P., Sarkar S.: Multiple inflation and the WMAP ‘glitches’ II. Data analysis and cosmological parameter extraction. Phys. Rev. D 76, 123504 (2007) [arXiv:0706.2443[astro-ph]]CrossRefADSGoogle Scholar
  84. 84.
    Hunt, P., Sarkar, S.: Constraints on large scale voids from WMAP-5 and SDSS. arXiv:0807.4508 [astro-ph]Google Scholar
  85. 85.
    Adams J.A., Ross G.G., Sarkar S.: Multiple inflation. Nucl. Phys. B 503, 405 (1997) [arXiv:hepph/9704286]CrossRefADSGoogle Scholar
  86. 86.
    Yao W.M. et al.: Review of particle physics. [Particle Data Group]. J. Phys. G 33, 1 (2006)CrossRefADSGoogle Scholar
  87. 87.
    Drexlin G.: [KATRIN Collaboration], KATRIN: direct measurement of a sub-eV neutrino mass. Nucl. Phys. Proc. Suppl. 145, 263 (2005)CrossRefGoogle Scholar
  88. 88.
    Elgarøy   Lahav O.: The role of priors in deriving upper limits on neutrino masses from the 2dFGRS and WMAP. JCAP 0304, 004 (2003) [arXiv:astro-ph/0303089]ADSGoogle Scholar
  89. 89.
    Singh S., Ma C.P.: Neutrino clustering in cold dark matter halos: implications for ultra high energy cosmic rays. Phys. Rev. D 67, 023506 (2003) [arXiv:astro-ph/0208419]CrossRefADSGoogle Scholar
  90. 90.
    Hu W., Sugiyama N.: Small scale cosmological perturbations: an analytic approach. Astrophys. J. 471, 542 (1996) [arXiv:astro-ph/9510117]CrossRefADSGoogle Scholar
  91. 91.
    Rakic A., Schwarz D.J.: Correlating anomalies of the microwave sky: the good, the evil and the axis. Phys. Rev. D 75, 103002 (2007) [arXiv:astro-ph/0703266]CrossRefADSGoogle Scholar
  92. 92.
    Gurzadyan V.G., Kashin A., Bianco C.L., Khachatryan H., Yegorian G.: On axial and plane–mirror inhomogeneities in the WMAP3 cosmic microwave background maps. Mod. Phys. Lett. A 22, 2955 (2007) [arXiv:0709.0886 [astro-ph]]CrossRefADSMATHGoogle Scholar
  93. 93.
    Freedman W.L. et al.: Final results from the hubble space telescope key project to measure the Hubble constant. Astrophys. J. 553, 47 (2001) [arXiv:astro-ph/0012376]CrossRefADSGoogle Scholar
  94. 94.
    Sandage A., Tammann G.A., Saha A., Reindl B., Macchetto F.D., Panagia N.: The Hubble constant: a summary of the HST Program for the luminosity calibration of Type Ia Supernovae by means of cepheids. Astrophys. J. 653, 843 (2006) [arXiv:astro-ph/0603647]CrossRefADSGoogle Scholar
  95. 95.
    Hasinger G., Schartel N., Komossa S.: Discovery of an ionized Fe-K edge in the z = 3.91 broad absorption line Quasar APM08279+5255 with XMM-Newton. Astrophys. J. 573, L77 (2002) [arXiv:astroph/0207005]CrossRefADSGoogle Scholar
  96. 96.
    Komossa, S., Hasinger, G.: The X-ray evolving universe: (ionized) absorption and dust, from nearby Seyfert galaxies to high-redshift quasars. arXiv:astro-ph/0207321Google Scholar
  97. 97.
    Jain D., Dev A.: Age of high redshift objects—a Litmus Test for the dark energy models. Phys. Lett. B 633, 436 (2006) [arXiv:astro-ph/0509212]CrossRefADSGoogle Scholar
  98. 98.
    Fields, B., Sarkar, S.: Big-bang nucleosynthesis (PDG mini-review). arXiv:astro-ph/0601514Google Scholar
  99. 99.
    Krauss L.M., Chaboyer B.: Age Estimates of Globular Clusters in the Milky Way: Constraints on Cosmology. Science 299, 65 (2003)CrossRefADSGoogle Scholar
  100. 100.
    Wang X.F., Wang L.F., Pain R., Zhou X., Li Z.W.: Determination of the Hubble constant, the intrinsic scatter of luminosities of Type Ia SNe, and evidence for non-standard dust in other galaxies. Astrophys. J. 645, 488 (2006) [arXiv:astro-ph/0603392]CrossRefADSGoogle Scholar
  101. 101.
    Schwarz, D.J., Weinhorst, B.: (An)isotropy of the Hubble diagram: comparing hemispheres. arXiv:0706.0165 [astro-ph]Google Scholar
  102. 102.
    Seikel M., Schwarz D.J.: Howstrong is the evidence for accelerated expansion? JCAP 0802, 007 (2008) [ar- Xiv:0711.3180[astro-ph]]ADSGoogle Scholar
  103. 103.
    McClure M.L., Dyer C.C.: Anisotropy in the Hubble constant as observed in the HST Extragalactic Distance Scale Key Project results. New Astron 12, 533 (2007) [arXiv:astro-ph/0703556]CrossRefADSGoogle Scholar
  104. 104.
    Gurzadyan, V.G., et al.: Kolmogorov CMB Sky. arXiv:0811.2732 [astro-ph]Google Scholar
  105. 105.
    Kutschera M., Dyrda M.: Coincidence of universe age in LambdaCDMandMilne cosmologies. Acta Phys. Pol. B 38, 215 (2007) [arXiv:astro-ph/0605175]ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Helsinki Institute of PhysicsUniversity of HelsinkiHelsinkiFinland
  2. 2.Department of Physical SciencesUniversity of HelsinkiHelsinkiFinland

Personalised recommendations