General Relativity and Gravitation

, Volume 41, Issue 10, pp 2469–2484

Editorial note to: R. P. Kerr and A. Schild, A new class of vacuum solutions of the Einstein field equations

  • Andrzej Krasiński
  • Enric Verdaguer
  • Roy Patrick Kerr
Golden Oldie Editorial

Keywords

Einstein equations Kerr solution Kerr–Schild mertrics Black holes Golden Oldie 

References

  1. 1.
    Frolov V.P., Novikov I.D.: Black Hole Physics: Basic Concepts and New Developments. Kluwer, Dordrecht (1998) ISBN: 978-0-7923-5146-7MATHGoogle Scholar
  2. 2.
    Straumann N.: General Relativity: with Applications to Astrophysics. Springer, Berlin (2004) ISBN 978-3540219248MATHGoogle Scholar
  3. 3.
    Kerr R.P.: Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 11, 237 (1963)MATHCrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Debney G.C., Kerr R.P., Schild A.: Solutions of the Einstein and Einstein–Maxwell equations. J. Math. Phys. 10, 1842 (1969)CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Carter B.: Black hole equilibrium states. Part I: Analytic and geometric properties of the Kerr solutions. In: Witt, C., Witt, B.S. (eds) Black Holes—les astres occlus, pp. 61. Gordon and Breach, New York (1973)Google Scholar
  6. 6.
    Boyer R.H., Lindquist R.W.: Maximal analytic extension of the Kerr metric. J. Math. Phys. 8, 265 (1967)MATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Stephani H., Kramer D., MacCallum M., Hoenselaers C., Herlt E.: Exact Solutions of Einstein’s Field Equations, 2nd edn. Cambridge University Press, Cambridge (2003)MATHGoogle Scholar
  8. 8.
    Maison D.: Phys. Rev. Lett. 41, 521 (1978)CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Belinski V.A., Zakharov V.E.: Sov. Phys. JETP 48, 985 (1978)ADSGoogle Scholar
  10. 10.
    Belinski V.A., Zakharov V.E.: Sov. Phys. JETP 50, 1 (1979)ADSGoogle Scholar
  11. 11.
    Harrison B.K.: Phys. Rev. Lett. 41, 1197 (1978)CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Harrison B.K.: Phys. Rev. D 21, 1695 (1980)CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Neugebauer G.: J. Phys. A 12, L67 (1979)CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Neugebauer G.: J. Phys. A 13, L19 (1980)CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Kinnersley W., Chitre D.M.: J. Math. Phys. 18, 1538 (1977)CrossRefADSGoogle Scholar
  16. 16.
    Kinnersley W., Chitre D.M.: J. Math. Phys. 19, 1926 (1978)CrossRefADSGoogle Scholar
  17. 17.
    Hoenselaers C., Kinnersley W., Xanthopoulos B.C.: J. Math. Phys. 20, 2530 (1979)CrossRefADSGoogle Scholar
  18. 18.
    Hauser I., Ernst F.J.: Phys. Rev. D 20, 362 (1979)CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Hauser I., Ernst F.J.: J. Math. Phys. 21 1126, 1418 (1980)CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Tomimatsu A., Sato H.: Phys. Rev. Lett. 29, 1344 (1972)CrossRefADSGoogle Scholar
  21. 21.
    Hawking S.W.: Commun. Math. Phys. 25, 152 (1972)CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    Hawking S.W., Ellis G.F.R.: The Large Scale Structure of Space–Time. Cambridge University Press, Cambridge (1973)MATHGoogle Scholar
  23. 23.
    Carter B.: Phys. Rev. Lett. 26, 331 (1972)CrossRefADSGoogle Scholar
  24. 24.
    Robinson D.C.: Phys. Rev. Lett. 34, 905 (1975)CrossRefADSGoogle Scholar
  25. 25.
    Chandrasekhar S.: The Mathematical Theory of Black Holes. Clarendon Press, Oxford (1983)MATHGoogle Scholar
  26. 26.
    Myers R.C., Perry M.J.: Ann. Phys. (N.Y.) 172, 304 (1986)MATHCrossRefADSMathSciNetGoogle Scholar
  27. 27.
    Emparam R., Reall H.S.: Phys. Rev. Lett. 88, 101101 (2002)CrossRefADSMathSciNetGoogle Scholar
  28. 28.
    Pomeransky A.A.: Phys. Rev. D 73, 044004 (2006)CrossRefADSMathSciNetGoogle Scholar
  29. 29.
    Iguchi H., Mishima T.: Phys. Rev. D 73, 121501 (2006)CrossRefADSMathSciNetGoogle Scholar
  30. 30.
    Kerr R.P.: Gravitational collapse and rotation. In: Robinson, I., Schild, A., Schucking, E.L. (eds) Quasi-stellar Sources and Gravitational Collapse, including the Proceedings of the First Texas Symposium on Relativistic Astrophysics, pp. 99–109. The University of Chicago Press, Chicago (1965)Google Scholar
  31. 31.
    Kerr R.P., Schild A.: Atti del Convegno sulla Relativita Generale: Problemi dell’Energia e Onde Gravitazionali, pp. 1–12. G. Barbèra Editore, Firenze (1965)Google Scholar
  32. 32.
    Kerr R.P., Schild A.: Some Algebraically Degenerate Solutions of Einstein’s Gravitational Field Equations. In: Finn, R. (eds) Proc. Sym. in Applied Math, XVII., pp. 199–209. American Mathematical Society, Providence (1965)Google Scholar
  33. 33.
    Kerr R.P., Debney G.C.: Einstein spaces with symmetry groups. J. Math. Phys. 11, 2807 (1970)MATHCrossRefADSMathSciNetGoogle Scholar
  34. 34.
    Kerr R.P., Wilson W.B.: Singularities in the Kerr–Schild Metrics. Gen. Relativ. Gravit 10, 273 (1979)MATHCrossRefADSMathSciNetGoogle Scholar
  35. 35.
  36. 36.
    The New Encyclopaedia Britannica (Micropaedia), vol. 6, 15th edn, p. 815, the entry “Kerr, Roy (Patrick)”. The University of Chicago, Chicago (1990)Google Scholar
  37. 37.

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Andrzej Krasiński
    • 1
  • Enric Verdaguer
    • 2
  • Roy Patrick Kerr
    • 3
  1. 1.N. Copernicus Astronomical Center, Polish Academy of SciencesWarsawPoland
  2. 2.Departament de Física FonamentalUniversitat de BarcelonaBarcelonaSpain
  3. 3.Mathematics and Statistics DepartmentUniversity of CanterburyChristchurch 1New Zealand

Personalised recommendations