General Relativity and Gravitation

, Volume 41, Issue 9, pp 2093–2111

Existence of families of spacetimes with a Newtonian limit

Open Access
Research Article

Abstract

Jürgen Ehlers developed frame theory to better understand the relationship between general relativity and Newtonian gravity. Frame theory contains a parameter λ, which can be thought of as 1/c2, where c is the speed of light. By construction, frame theory is equivalent to general relativity for λ > 0, and reduces to Newtonian gravity for λ = 0. Moreover, by setting \({\epsilon=\sqrt{\lambda}}\) , frame theory provides a framework to study the Newtonian limit \({\epsilon \searrow 0 \,{\rm (i.e.}\, c\rightarrow \infty)}\). A number of ideas relating to frame theory that were introduced by Jürgen have subsequently found important applications to the rigorous study of both the Newtonian limit and post-Newtonian expansions. In this article, we review frame theory and discuss, in a non-technical fashion, some of the rigorous results on the Newtonian limit and post-Newtonian expansions that have followed from Jürgen’s work.

Keywords

Frame theory Newtonian limit Post-Newtonian expansions 

References

  1. 1.
    Blanchet, L.: Gravitational radiation from post-Newtonian sources and inspiralling compact binaries. Living Rev. Relativ. 9 (2006) 4. http://www.livingreviews.org/lrr-2006-4. Cited on 01.03.2009
  2. 2.
    Browning G., Kreiss H.O.: Problems with different time scales for nonlinear partial differential equations. SIAM J. Appl. Math. 42, 704–718 (1982)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Cartan E.: Sur les variétś à connexion affine et la théorie de la relativié généralisée. Ann. Sci. Ecole Norm. Sup. 40, 325–412 (1923)MathSciNetGoogle Scholar
  4. 4.
    Dautcourt G.: Die Newtonsche Gravitationstheorie als strenger Grenzfall der Allgemeinen Relativitätstheorie. Acta Phys. Polonica 25, 637–646 (1964)MathSciNetGoogle Scholar
  5. 5.
    Ehlers J.: On limit relations between, and approximative explanations of physical theories. In: Barcan Marcus, R., Dorn, G.J.W., Weingartner, P. (eds) Logic, Methodology and Philosophy of Science VII, pp. 387–403. North Holland, Amsterdam (1986)CrossRefGoogle Scholar
  6. 6.
    Ehlers J.: Examples of Newtonian limits of relativistic spacetimes. Class Quantum Grav. 14, A119–A126 (1997)MATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Friedrichs K.: Eine invariante Formulierung des Newtonschen Gravitation-sgesetzes und des Grenzüberganges vom Einsteinschen zum Newtonschen Gesetz. Math. Ann. 98, 566–575 (1927)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Futamase, T., Itoh, Y.: The post-Newtonian approximation for relativistic compact binaries. Living Rev. Relativ. 10 (2007), 2. http://www.livingreviews.org/lrr-2007-2. cited on 01.03.2009)
  9. 9.
    Heilig U.: On the existence of rotating stars in general relativity. Commun. Math. Phys. 166, 457–493 (1995)MATHCrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Iriondo M.S., Leguizamón E.O., Reula O.A.: Fast and slow solutions in general relativity: the initialization procedure. J. Math. Phys. 39, 1555–1565 (1998)MATHCrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Klainerman S., Majda A.: Compressible and incompressible fluids. Comm. Pure Appl. Math. 35, 629–651 (1982)MATHCrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Kreiss H.O.: Problems with different time scales for partial differential equations. Comm. Pure Appl. Math. 33, 399–439 (1980)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Kreiss H.O.: Problems with different time scales. Acta Numer. 1, 101–139 (1991)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Künlze H.P.: Galilei and Lorentz structures on space-time: comparison of the corresponding geometry and physics. Ann. Inst. Henri Poincaré 17, 337–362 (1972)Google Scholar
  15. 15.
    Künlze H.P.: Covariant Newtonian limit of Lorentz space-times. Gen. Relativ. Gravit. 7, 445–457 (1976)Google Scholar
  16. 16.
    Lottermoser M.: A convergent post-Newtonian approximation for the constraints in general relativity. Ann. Inst. Henri Poincaré 57, 279–317 (1992)MATHMathSciNetGoogle Scholar
  17. 17.
    Makino T.: On a local existence theorem for the evolution equation of gaseous stars. In: Nishida, T., Mimura, M., Fujii, H. (eds) Patterns and Waves, North-Holland, Amsterdam (1986)Google Scholar
  18. 18.
    Oliynyk T.A.: Newtonian perturbations and the Einstein-Yang-Mills-dilaton equations. Class. Quantum 22, 2269–2294 (2005)MATHCrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Oliynyk T.A.: An existence proof for the gravitating BPS monopole. Inst. Henri Poincaré 7, 199–232 (2006)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Oliynyk T.A.: The Newtonian limit for perfect fluids. Commun. Math. Phys. 276, 131–188 (2007)MATHCrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Oliynyk, T.A.: Post-Newtonian expansions for perfect fluids. Commun. Math. Phys. (to appear)Google Scholar
  22. 22.
    Oliynyk, T.A.: The fast Newtonian limit for perfect fluids. PreprintGoogle Scholar
  23. 23.
    Oliynyk, T.A.: Cosmological post-Newtonian expansions to arbitrary order. PreprintGoogle Scholar
  24. 24.
    Rendall A.D.: On the definition of post-Newtonian approximations. Proc. R. Soc. Lond. A 438, 341–360 (1992)MATHCrossRefADSMathSciNetGoogle Scholar
  25. 25.
    Rendall A.D.: The initial value problem for a class of general relativistic fluid bodies. J. Math. Phys. 33, 1047–1053 (1992)MATHCrossRefADSMathSciNetGoogle Scholar
  26. 26.
    Rendall A.D.: The Newtonian limit for asymptotically flat solutions of the Vlasov-Einstein system. Commun. Math. Phys. 163, 89–112 (1994)MATHCrossRefADSMathSciNetGoogle Scholar
  27. 27.
    Rüede C., Straumann N.: On Newton-Cartan cosmology. Helv. Phys. Acta 70, 318–335 (1997)MATHADSMathSciNetGoogle Scholar
  28. 28.
    Schochet S.: Symmetric hyperbolic systems with a large parameter. Comm. Partial Differ. Equ. 11, 1627–1651 (1986)MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Schochet S.: Asymptotics for symmetric hyperbolic systems with a large parameter. J. Differ. Equ. 75, 1–27 (1988)MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Schochet S.: Fast singular limits of hyperbolic PDEs. J. Differ. Equ. 114, 476–512 (1994)MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Trautman A.: Sur la théorie newtonienne de la gravitation. C.R. Acad. Sci. Paris 257, 617–620 (1963)MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.School of Mathematical SciencesMonash UniversityMelbourneAustralia
  2. 2.Max Planck Institute for Gravitational PhysicsGolmGermany

Personalised recommendations