Advertisement

General Relativity and Gravitation

, Volume 41, Issue 11, pp 2561–2578 | Cite as

Some properties of evolving wormhole geometries within nonlinear electrodynamics

  • Aarón V. B. Arellano
  • Nora Breton
  • Ricardo Garcia-Salcedo
Research Article

Abstract

In this paper, we review some properties for the evolving wormhole solution of Einstein equations coupled to nonlinear electrodynamics. We integrate the geodesic equations in the effective geometry obeyed by photons; we check out the weak field limit and find the traversability conditions. Then we analyze the case when the lagrangian depends on two electromagnetic invariants and it turns out that there is not a more general solution within the assumed geometry.

Keywords

Nonlinear electrodynamics Exact solutions Wormhole 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Einstein A., Rosen N.: The particle problem in the general theory of relativity. Phys. Rev. 48, 73 (1935)ADSMATHCrossRefGoogle Scholar
  2. 2.
    Wheeler J.A.: Geons. Phys. Rev. 97, 511 (1955)ADSMATHCrossRefGoogle Scholar
  3. 3.
    Morris M.S., Thorne K.S.: Wormholes in spacetime and their use for interstellar travel: a tool for teaching general relativity. Am. J. Phys. 56, 395 (1988)MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Visser M.: Lorentzian Wormholes. American Institute of Physics, New York (1995)Google Scholar
  5. 5.
    Lobo, F.N.: Ph.D. thesis, Centro de Astronomia e Astrofísica da Universidade de Lisboa, (2004)Google Scholar
  6. 6.
    Lobo, F.N.: Exotic solutions in general relativity: traversable wormholes and ‘warp drive’ spacetimes. invited chapter to appear as edited collection “Classical and Quantum Gravity Research Progress”. Nove Science Publishers [arXiv:gr-qc/0710.4474v1]Google Scholar
  7. 7.
    Roman T.A.: Inflating Lorentzian wormholes. Phys. Rev. D 47, 1370 (1993)MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Kar S.: Evolving wormholes and the energy conditions. Phys. Rev. D 49, 862 (1994)ADSCrossRefGoogle Scholar
  9. 9.
    Kar S., Sahdev D.: Evolving Lorentzian wormholes. Phys. Rev. D 53, 722 (1996) [arXiv:gr-qc/9506094]MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Anchordoqui L.A., Torres D.F., Trobo M.L.: Evolving wormhole geometries. Phys. Rev. D 57, 829 (1998) [arXiv:gr-qc/9710026]MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Kim S.W.: Cosmological model with a traversable wormhole. Phys. Rev. D 53, 6889 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    Seiberg N., Witten E.: String theory and noncommutative geometry. JHEP 9909, 032 (1999) [arXiv:hep-th/9908142]MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Novello M., Perez Bergliaffa S.E., Salim J.: Nonlinear electrodynamics and the acceleration of the universe. Phys. Rev. D 69, 127301 (2004) [arXiv:astro-ph/0312093]ADSCrossRefGoogle Scholar
  14. 14.
    Moniz P.V.: Quintessence and Born–Infeld cosmology. Phys. Rev. D 66, 103501 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    García-Salcedo R., Bretón N.: Born–Infeld Cosmologies. Int. J. Mod. Phys. A 15, 4341–4354 (2000) [arXiv:gr-qc/0004017]ADSMATHGoogle Scholar
  16. 16.
    García-Salcedo R., Bretón N.: Nonlinear electrodynamics in Bianchi spacetimes. Class. Quantum Grav. 20, 5425–5437 (2003) [arXiv:hep-th/0212130]ADSMATHCrossRefGoogle Scholar
  17. 17.
    García-Salcedo R., Bretón N.: Singularity-free Bianchi spaces with nonlinear electrodynamics. Class. Quantum Grav. 22, 4783–4802 (2005) [arXiv:gr-qc/0410142]ADSMATHCrossRefGoogle Scholar
  18. 18.
    Dyadichev V.V., Gal’tsov D.V., Zorin A.G., Zotov M.Yu.: Non-Abelian Born–Infeld cosmology. Phys. Rev. D 65, 084007 (2002) [arXiv:hep-th/0111099]MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Vollick D.N.: Anisotropic Born–Infeld Cosmologies. Gen. Relativ. Gravit. 35, 1511–1516 (2003) [arXiv:hep-th/0102187]MathSciNetADSMATHCrossRefGoogle Scholar
  20. 20.
    Burinskii A., Hildebrandt S.R.: New type of regular black holes and particlelike solutions from nonlinear electrodynamics. Phys. Rev. D 65, 104017 (2002) [arXiv:hep-th/0202066]MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    Breton N.: Stability of nonlinear magnetic black holes. Phys. Rev. D 72, 044015 (2005) [arXiv:hep-th/0502217]ADSCrossRefGoogle Scholar
  22. 22.
    Bronnikov K.A.: Regular magnetic black holes and monopoles from nonlinear electrodynamics. Phys. Rev. D 63, 044005 (2001) [arXiv:gr-qc/0006014]MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    Baldovin F., Novello M., Perez Bergliaffa S.E., Salim J.M.: A nongravitational wormhole. Class. Quantum Grav. 17, 3265–3276 (2000) [arXiv:gr-qc/0003075]MathSciNetADSMATHCrossRefGoogle Scholar
  24. 24.
    Bronnikov K.A., Grinyok S.V.: Electrically charged and neutral wormhole instability in scalar-tensor gravity. Grav. Cosmol. 11, 75–81 (2006) [arXiv:gr-qc/0509062]ADSGoogle Scholar
  25. 25.
    Arellano A.V.B., Lobo F.S.N.: Non-existence of static, spherically symmetric and stationary, axisymmetric traversable wormholes coupled to nonlinear electrodynamics. Class. Quantum Grav. 23, 7229–7244 (2006) [arXiv:gr-qc/0604095]MathSciNetADSMATHCrossRefGoogle Scholar
  26. 26.
    Arellano A.V.B., Lobo F.S.N.: Evolving wormhole geometries within nonlinear electrodynamics. Class. Quantum Grav. 23, 5811–5824 (2006)MathSciNetADSMATHCrossRefGoogle Scholar
  27. 27.
    Plebański J.F.: Lectures on Non-linear Electrodynamics. Monograph of the Niels Bohr Institute Nordita, Copenhagen (1968)Google Scholar
  28. 28.
    Gutiérrez S.A., Dudley A.L., Plebański J.F.: Signals and discontinuities in general relativistic nonlinear electrodynamics. J. Math. Phys. 22, 2835 (1981)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Lemos J.P.S., Lobo F.S.N., de Oliveira S.Q.: Morris–Thorne wormholes with a cosmological constant. Phys. Rev. D 68, 064004 (2003) [arXiv:gr-qc/0302049]ADSCrossRefGoogle Scholar
  30. 30.
    Hochberg D., Visser M.: Dynamic wormholes, antitrapped surfaces, and energy conditions. Phys. Rev. D 58, 044021 (1998)MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation, Sec. 32.6. Freeman, San Francisco (1973)Google Scholar
  32. 32.
    Bardeen, J.: Presented at GR5, Tiflis, USSR, published in conference proceedings, 1968. In: Ayón-Beato, E., García, A. (eds.) The Bardeen model as a nonlinear magnetic monopole. Phys. Lett. B 493, 149–152 (2000) [arXiv:gr-qc/0009077]Google Scholar
  33. 33.
    Dymnikova I.: Regular electrically charged vacuum structures with de Sitter center in nonlinear electrodynamics coupled to general relativity. Class. Quantum Grav. 21, 4417–29 (2004) [arXiv:gr-qc/0407072]MathSciNetADSMATHCrossRefGoogle Scholar
  34. 34.
    Burinskii A., Hildebrandt S.R.S.R.: New type of regular black holes and particlelike solutions from nonlinear electrodynamics. Phys. Rev. D 65, 104017 (2002) [arXiv:hep-th/0202066]MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    Novello M., Perez Bergliaffa S.E., Salim J.M.: Singularities in general relativity coupled to nonlinear electrodynamics. Class. Quantum Grav. 17, 3821 (2000)MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Aarón V. B. Arellano
    • 1
  • Nora Breton
    • 2
  • Ricardo Garcia-Salcedo
    • 3
  1. 1.Facultad de CienciasUniversidad Autónoma del Estado de MéxicoTolucaMexico
  2. 2.Depto. de Física, Centro de Investigación y de Estudios Avanzados del I.P.N.Mexico, D.F.Mexico
  3. 3.Depto. de Física EducativaCICATA-IPNMexico, D.F.Mexico

Personalised recommendations