Advertisement

General Relativity and Gravitation

, Volume 41, Issue 4, pp 707–741 | Cite as

Loop quantum cosmology: an overview

  • Abhay Ashtekar
Review Article

Abstract

A brief overview of loop quantum cosmology of homogeneous isotropic models is presented with emphasis on the origin of and subtleties associated with the resolution of big bang and big crunch singularities. These results bear out the remarkable intuition that John Wheeler had. Discussion is organized at two levels. The the main text provides a bird’s eye view of the subject that should be accessible to non-experts. Appendices address conceptual and technical issues that are often raised by experts in loop quantum gravity and string theory.

Keywords

Loop quantum cosmology Singularity resolution Planck scale physics Quantum geometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wheeler J.A.: Superspace and quantum geometrodynamics. In: Wheeler, J.A., DeWitt, C.M. (eds) Battelle Rencontres., Benjamin, New York (1972)Google Scholar
  2. 2.
    Misner, C.W.: Mixmaster universe. Phys. Rev. Lett. 22, 1071–1074 (1969); Minisuperspace. In: Magic without Magic: John Archibald Wheeler; a collection of essays in honor of his sixtieth birthday. W. H. Freeman, San Francisco (1972)Google Scholar
  3. 3.
    Bojowald M.: Loop quantum cosmology. Liv. Rev. Rel. 8, 11 (2005)Google Scholar
  4. 4.
    Ashtekar A.: An introduction to loop quantum gravity through cosmology. Nuovo Cimento 112, 1–20 (2007) arXiv:gr-qc/0702030Google Scholar
  5. 5.
    Ashtekar A., Lewandowski J.: Background independent quantum gravity: a status report. Class. Quantum Grav. 21, R53–R152 (2004)zbMATHCrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Rovelli C.: Quantum Gravity. Cambridge University Press, Cambridge (2004)zbMATHGoogle Scholar
  7. 7.
    Thiemann T.: Introduction to Modern Canonical Quantum General Relativity. Cambridge University Press, Cambridge (2007)Google Scholar
  8. 8.
    Ashtekar A., Lewandowski J., Marolf D., Mourão T., Thiemann J.: Quantization of diffeomorphism invariant theories of connections with local degrees of freedom. J. Math. Phys. 36, 6456–6493 (1995)zbMATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Rovelli, R., Smolin, L.: Discreteness of area and volume in quantum gravity. Nucl. Phys. B 442, 593–622 (1995); Erratum B 456, 753 (1996)Google Scholar
  10. 10.
    Ashtekar A., Lewandowski J.: Quantum theory of geometry I: area operators. Class. Quantum Grav. 14, A55–A81 (1997)zbMATHCrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Ashtekar A., Lewandowski J.: Quantum theory of geometry II: volume operators. Adv. Theo. Math. Phys. 1, 388–429 (1997)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Hartle J.B., Hawking S.W.: Wave function of the Universe. Phys. Rev. D 28, 2960 (1983)CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Gasperini M., Veneziano G.: The pre-big bang scenario in string cosmology. Phys. Rept. 373, 1 (2003)CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Khoury J., Ovrut B.A., Steinhardt P.J., Turok N.: The ekpyrotic Universe: colliding branes and the origin of the hot big bang. Phys. Rev. D 64, 123522 (2001)CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Khoury J., Ovrut B., Seiberg N., Steinhardt P.J., Turok N.: From big crunch to big bang. Phys. Rev. D 65, 086007 (2002)CrossRefADSGoogle Scholar
  16. 16.
    Ashtekar, A., Stachel, J. (eds): Conceptual problems of quantum gravity.. Birkhäuser, Boston (1988)Google Scholar
  17. 17.
    Komar A.: Quantization program for general relativity. In: Carmeli, M., Fickler, S.I., Witten, L. (eds) Relativity, Plenum, New York (1970)Google Scholar
  18. 18.
    Kuchar K.: Canonical methods of quantization. In: Isham, C.J., Penrose, R., Sciama, D.W. (eds) Quantum Gravity 2, A Second Oxford Symposium, Clarendon Press, Oxford (1981)Google Scholar
  19. 19.
    DeWitt B.S.: Quantum theory of gravity I. The canonical theory. Phys. Rev. 160, 1113–1148 (1967)zbMATHCrossRefADSGoogle Scholar
  20. 20.
    Green D., Unruh W.: Difficulties with recollapsing models in closed isotropic loop quantum cosmology. Phys. Rev. D 70, 103502 (2004) arXiv:gr-qc/04-0074CrossRefADSGoogle Scholar
  21. 21.
    Ashtekar A., Pawlowski T., Singh P.: Quantum nature of the big bang: an analytical and numerical investigation I. Phys. Rev. D 73, 124038 (2006)CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    Ashtekar, A., Pawlowski, T., Singh, P.: Loop quantum cosmology in the pre-inflationary epoch (in preparation)Google Scholar
  23. 23.
    Rovelli C.: Quantum mechanics without time: a model. Phys. Rev. 42, 2638 (1990)Google Scholar
  24. 24.
    Ashtekar A., Pawlowski T., Singh P.: Quantum nature of the big bang: improved dynamics. Phys. Rev. D 74, 084003 (2006)CrossRefADSMathSciNetGoogle Scholar
  25. 25.
    Kiefer C.: Wavepsckets in minisuperspace. Phys. Rev. D 38, 1761–1772 (1988)CrossRefADSMathSciNetGoogle Scholar
  26. 26.
    Marolf, D.: Refined algebraic quantization: Systems with a single constraint. arXive:gr-qc/9508015Google Scholar
  27. 27.
    Marolf D.: Quantum observables and recollapsing dynamics. Class. Quantum Grav. 12, 1199–1220 (1994)CrossRefADSMathSciNetGoogle Scholar
  28. 28.
    Ashtekar A., Bombelli L., Corichi A.: Semiclassical states for constrained systems. Phys. Rev. D 72, 025008 (2005)CrossRefADSMathSciNetGoogle Scholar
  29. 29.
    Kamenshchik A., Kiefer C., Sandhofer B.: Quantum cosmology with big break singularity. Phys. Rev. D 76, 064032 (2007)CrossRefADSMathSciNetGoogle Scholar
  30. 30.
    Ashtekar A., Pawlowski T., Singh P., Vandersloot K.: Loop quantum cosmology of k = 1 FRW models. Phys. Rev. D 75, 0240035 (2006)MathSciNetGoogle Scholar
  31. 31.
    Szulc L., Kaminski W., Lewandowski J.: Closed FRW model in loop quantum cosmology. Class. Quantum Grav. 24, 2621–2635 (2006)CrossRefADSMathSciNetGoogle Scholar
  32. 32.
    Bojowald M.: Absence of singularity in loop quantum cosmology. Phys. Rev. Lett. 86, 5227–5230 (2001)CrossRefADSMathSciNetGoogle Scholar
  33. 33.
    Ashtekar A., Bojowald M., Lewandowski J.: Mathematical structure of loop quantum cosmology. Adv. Theo. Math. Phys. 7, 233–268 (2003)MathSciNetGoogle Scholar
  34. 34.
    Lewandowski J., Okolow A., Sahlmann H., Thiemann T.: Uniqueness of diffeomorphism invariant states on holonomy flux algebras. Comm. Math. Phys. 267, 703–733 (2006)zbMATHCrossRefADSMathSciNetGoogle Scholar
  35. 35.
    Fleishchack C.: Representations of the Weyl algebra in quantum geometry. Comm. Math. Phys. 235, 67–140 (2009)CrossRefADSGoogle Scholar
  36. 36.
    Brunnemann J., Thiemann T.: On (cosmological) singularity avoidance in loop quantum gravity. Class. Quantum Grav. 23, 1395–1428 (2006)zbMATHCrossRefADSMathSciNetGoogle Scholar
  37. 37.
    Ashtekar A., Pawlowski T., Singh P.: Quantum nature of the big bang. Phys. Rev. Lett. 96, 141301 (2006)CrossRefADSMathSciNetGoogle Scholar
  38. 38.
    Corichi A., Singh P.: Is loop quantization in cosmology unique?. Phys. Rev. D 78, 024034 (2008)CrossRefADSMathSciNetGoogle Scholar
  39. 39.
    Bentivegna E., Pawlowski T.: Anti-deSitter universe dynamics in LQC. Phys. Rev. D 77, 124025 (2008)CrossRefADSMathSciNetGoogle Scholar
  40. 40.
    Ashtekar, A., Pawlowski, T.: Loop quantum cosmology with a positive cosmological constant (in preparation)Google Scholar
  41. 41.
    Ashtekar, A., Wilson-Ewing, E.: Loop quantum cosmology of Binachi I models (in preparation)Google Scholar
  42. 42.
    Kamin’ski W., Lewandowski J., Szulc l.: The status of quantum geometry in the dynamical sector of loop quantum cosmology, Class. Quantum Grav. 25, 055003 (2008)CrossRefADSMathSciNetGoogle Scholar
  43. 43.
    Kamin’ski, W., Lewandowski, J.: The flat FRW model in LQC: the self-adjointness, arXiv:0709.3120Google Scholar
  44. 44.
    Martin-Benito M., Garay L.J., Mena Marugan G.A.: Hybrid quantum 7Gowdy cosmology: combining loop and Fock quantizations. Phys. Rev. D 78, 083516 (2008)CrossRefADSGoogle Scholar
  45. 45.
    Copeland, E.J., Mulryne, D.J., Nunes, N.J., Shaeri, M.: The gravitational wave background from super-inflation in Loop Quantum Cosmology, arXiv:0810.0104Google Scholar
  46. 46.
    Copeland, E.J., Mulryne, D.J., Nunes, N.J., Shaeri, M.: Superinflation in loop quantum cosmology, Phys. Rev. D 77, 023510 (2008) Research highlights in Nature: Roll with it: http://www.nature.com/nphys/journal/v4/n3/full/nphys900.html
  47. 47.
    Parisi L., Bruni M., Maartens R., Vandersloot K.: The Einstein static universe in loop quantum cosmology. Class. Quantum Grav. 24, 6243–6254 (2007)zbMATHCrossRefADSMathSciNetGoogle Scholar
  48. 48.
    Zhang X., Ling Y.: Inflationary universe in loop quantum cosmology. JCAP 0708, 012 (2007)ADSMathSciNetGoogle Scholar
  49. 49.
    Xu, P., Zhang, S.N.: Cosmological evolution of interacting phantom (quintessence) model in Loop Quantum Gravity, JCAP06, 007 (2008)Google Scholar
  50. 50.
    Fu X., Yu H., Wu P.: Dynamics of interacting phantom scalar field dark energy in loop quantum cosmology. Phys. Rev. D 78, 063001 (2008)CrossRefADSGoogle Scholar
  51. 51.
    Willis, J.: On the low energy ramifications and a mathematical extension of loop quantum gravity. Ph.D. Dissertation, The Pennsylvaina State University (2004)Google Scholar
  52. 52.
    Ashtekar, A., Bojowald, M., Willis, J.: Corrections to Friedmann equations induced by quantum geometry, IGPG preprint (2004)Google Scholar
  53. 53.
    Taveras V.: LQC corrections to the Friedmann equations for a universe with a free scalar field. Phys. Rev. D 78, 064072 (2008)CrossRefADSGoogle Scholar
  54. 54.
    Chiou D.W., Vandersloot K.: Behavior of non-linear anisopropies in bouncing Bianchi I models of loop quantum cosmology. Phys. Rev. D 76, 084015 (2007)CrossRefADSMathSciNetGoogle Scholar
  55. 55.
    Bojowald M.: Dynamical coherent states and physical solutions of quantum cosmological bounces. Phys. Rev. D 75, 123512 (2007)CrossRefADSMathSciNetGoogle Scholar
  56. 56.
    Ashtekar A., Corichi A., Singh P.: Robustness of predictions of loop quantum cosmology. Phys. Rev. D 77, 024046 (2008)CrossRefADSMathSciNetGoogle Scholar
  57. 57.
    Ashtekar A., Schilling T.A.: Geometrical formulation of quantum mechanics. In: Harvey, A. (eds) Einstein’s Path: Essays in Honor of Engelbert Schücking, pp. 23–65. Springer, New York (1999) arXiv:gr-qc/9706069Google Scholar
  58. 58.
    Borde A., Guth A., Vilenkin A.: Inflationary spacetimes are not past-complete. Phys. Rev. Lett. 90, 151301 (2003)CrossRefADSGoogle Scholar
  59. 59.
    Singh, P.: Are loop quantum cosmologies never singular? arXiv:0901.2750Google Scholar
  60. 60.
    Rendall A.D.: The nature of spacetime singularities. In: Ashtekar, A. (eds) 100 Years of Relativity—Space–Time Structure: Einstein and Beyond, World Scientific, Singapore (2005) arXiv:gr-qc/0503112Google Scholar
  61. 61.
    Ashtekar, A., Henderson, A., Sloan, D.: Hamiltonian formulation of general relativity and the Belinksii, Khalatnikov, Lifshitz conjecture, arXiv:0811.4160Google Scholar
  62. 62.
    Bousso R.: A covariant entropy conjecture. JHEP 07, 004 (1999)CrossRefMathSciNetGoogle Scholar
  63. 63.
    Flanagan E.E., Marolf D., Wald R.M.: Proof of the classical versions of the Bousso entropy bound and of the Generalized Second Law. Phys. Rev. D 62, 084035 (2000)CrossRefADSMathSciNetGoogle Scholar
  64. 64.
    Bousso R., Flanagan E.E., Marolf D.: Simple sufficient conditions for the generalized covariant entropy bound. Phys. Rev. D 68, 64001 (2003) arXiv:hep-th/0305149CrossRefADSMathSciNetGoogle Scholar
  65. 65.
    Ashtekar A., Wilson-Ewing E.: The covariant entropy bound and loop quantum cosmology. Phys. Rev. D 8, 06407 (2008)Google Scholar
  66. 66.
    Velhinho J.M.: on the kinematical structure of loop quantum cosmology. Class. Quantum Grav. 21, L109 (2004)zbMATHCrossRefADSMathSciNetGoogle Scholar
  67. 67.
    Giesel, K., Hofmann, S., Thiemann, T., Winkler, O.: Manifestly Gauge-Invariant General Relativistic Perturbation Theory: I. Foundations, arXiv:0711.0115Google Scholar
  68. 68.
    Manifestly Gauge-Invariant General Relativistic Perturbation Theory: II. FRW Background and First Order, arXiv:0711.0117Google Scholar
  69. 69.
    Brown D., Kuchař K.: Dust as a standard of space and time in canonical quantum gravity. Phys. Rev. D 51, 5600–5629 (1995)CrossRefADSMathSciNetGoogle Scholar
  70. 70.
    Varadarajan, M.: On the resolution of the big bang singularity in the isotropic loop quantum cosmology, arXiv:0812.0272Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Physics Department, Institute for Gravitation and the CosmosPenn StateUniversity ParkUSA

Personalised recommendations