General Relativity and Gravitation

, Volume 41, Issue 8, pp 1865–1886 | Cite as

A modification of Einstein–Schrödinger theory that contains Einstein–Maxwell–Yang–Mills theory

Research Article

Abstract

The Lambda-renormalized Einstein–Schrödinger theory is a modification of the original Einstein–Schrödinger theory in which a cosmological constant term is added to the Lagrangian, and it has been shown to closely approximate Einstein– Maxwell theory. Here we generalize this theory to non-Abelian fields by letting the fields be composed of d × d Hermitian matrices. The resulting theory incorporates the U(1) and SU(d) gauge terms of Einstein–Maxwell–Yang–Mills theory, and is invariant under U(1) and SU(d) gauge transformations. The special case where symmetric fields are multiples of the identity matrix closely approximates Einstein–Maxwell–Yang–Mills theory in that the extra terms in the field equations are < 10−13 of the usual terms for worst-case fields accessible to measurement. The theory contains a symmetric metric and Hermitian vector potential, and is easily coupled to the additional fields of Weinberg–Salam theory or flipped SU(5) GUT theory. We also consider the case where symmetric fields have small traceless parts, and show how this suggests a possible dark matter candidate.

Keywords

Einstein–Schrödinger theory Einstein–Straus theory Einstein–Maxwell–Yang–Mills theory Cosmological constant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Einstein A., Straus E.G.: Ann. Math. 47, 731 (1946)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Einstein A.: Rev. Mod. Phys. 20, 35 (1948)CrossRefMathSciNetADSGoogle Scholar
  3. 3.
    Einstein A.: Can. J. Math. 2, 120 (1949)MathSciNetGoogle Scholar
  4. 4.
    Einstein A., Kaufman B.: Ann. Math. 62, 128 (1955)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Einstein A.: The Meaning of Relativity, 5th edn. revised. Princeton University Press, Princeton (1956)Google Scholar
  6. 6.
    Schrödinger E.: Proc. R. Ir. Acad. 51A, 163 (1947)Google Scholar
  7. 7.
    Schrödinger E.: Proc. R. Ir. Acad. 52A, 1 (1948)Google Scholar
  8. 8.
    Schrödinger, E.: Space-Time Structure, p. 93, 108, 112. Cambridge Press, London (1950)Google Scholar
  9. 9.
    Callaway J.: Phys. Rev. 92, 1567 (1953)MATHCrossRefMathSciNetADSGoogle Scholar
  10. 10.
    Infeld, L.: Acta Phys. Pol. X, 284 (1950)Google Scholar
  11. 11.
    Einstein A., Infeld L.: Can. J. Math. 1, 209 (1949)MATHMathSciNetGoogle Scholar
  12. 12.
    Wallace P.R.: Am. J. Math. 63, 729 (1941)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Shifflett J.A.: Gen. Relativ. Gravit. 40, 1745 (2008) arXiv:gr-qc/0801.2307MATHCrossRefMathSciNetADSGoogle Scholar
  14. 14.
    Zeldovich Ya.B.: Sov. Phys. Uspekhi 11, 381 (1968)CrossRefADSGoogle Scholar
  15. 15.
    Sahni V., Starobinsky A.: Int. J. Mod. Phys. D 9, 373 (2000) arXiv:astro-ph/9904398ADSGoogle Scholar
  16. 16.
    Peskin, M.E., Schroeder, D.V.: An Introduction to Quantum Field Theory, pp. 790–791, 394, 402. Westview Press, Boulder (1995)Google Scholar
  17. 17.
    Carroll S.M., Press W.H.: Annu. Rev. Astron. Astrophys. 30, 499 (1992)CrossRefADSGoogle Scholar
  18. 18.
    Kurşunoğlu B.: Phys. Rev. 88, 1369 (1952)MATHCrossRefADSGoogle Scholar
  19. 19.
    Shifflett, J.A.: Extensions of the Einstein-Schrödinger Non-Symmetric Theory of Gravity, pp. 90, 112, 221–225, 231, 239–242. Doctoral Thesis, Washington University in St. Louis (2008)Google Scholar
  20. 20.
    Borchsenius K.: Phys. Rev. D 13, 2707 (1976)CrossRefMathSciNetADSGoogle Scholar
  21. 21.
    Borchsenius K.: Nuovo Cimento 46A, 403 (1978)MathSciNetADSGoogle Scholar
  22. 22.
    Bonnor W.B.: Proc. R. Soc. A 226, 366 (1954)MATHCrossRefMathSciNetADSGoogle Scholar
  23. 23.
    Barr S.M.: Phys. Lett. B 112, 219 (1982)CrossRefMathSciNetADSGoogle Scholar
  24. 24.
    Ellis J., Nanopoulos D.V., Walker J.: Phys. Lett. B 550, 99 (2002) arXiv:hep-ph/0205336CrossRefADSGoogle Scholar
  25. 25.
    Astier P. et al.: Astro. Astrophys. 447, 31 (2006) arXiv:astro-ph/0510447CrossRefADSGoogle Scholar
  26. 26.
    Misner, C.W., Thorne, S., Wheeler, J.A.: Gravitation, pp. 969, 437–442. W. H. Freeman, San Francisco (1973)Google Scholar
  27. 27.
    Deif, A.S.: Advanced Matrix Theory For Scientists and Engineers, p. 20, 153, 183, 171. Wiley, NY (1982)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of PhysicsWashington UniversitySt. LouisUSA

Personalised recommendations