General Relativity and Gravitation

, Volume 41, Issue 8, pp 1717–1724

Will the recently approved LARES mission be able to measure the Lense–Thirring effect at 1%?

Research Article

Abstract

After the approval by the Italian Space Agency of the LARES satellite, which should be launched at the end of 2009 with a VEGA rocket and whose claimed goal is a ≈1% measurement of the general relativistic gravitomagnetic Lense–Thirring effect in the gravitational field of the Earth, it is of the utmost importance to reliably assess the total realistic accuracy that can be reached by such a mission. The observable is a linear combination of the nodes of the existing LAGEOS and LAGEOS II satellites and of LARES able to cancel out the impact of the first two even zonal harmonic coefficients of the multipolar expansion of the classical part of the terrestrial gravitational potential representing a major source of systematic error. While LAGEOS and LAGEOS II fly at altitudes of about 6,000 km, LARES should be placed at an altitude of 1,450 km. Thus, it will be sensitive to much more even zonals than LAGEOS and LAGEOS II. Their corrupting impact has been evaluated up to degree  = 70 by using the sigmas of the covariance matrices of eight different global gravity solutions (EIGEN-GRACE02S, EIGEN-CG03C, GGM02S, GGM03S, JEM01-RL03B, ITG-Grace02s, ITG-Grace03, EGM2008) obtained by five institutions (GFZ, CSR, JPL, IGG, NGA) with different techniques from long data sets of the dedicated GRACE missions. It turns out to be ≈100–1,000% of the Lense–Thirring effect. An improvement of 2–3 orders of magnitude in the determination of the high degree even zonals would be required to constrain the bias to ≈1–10%.

Keywords

Experimental tests of gravitational theories Satellite orbits Harmonics of the gravity potential field 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ciufolini I.: Phys. Rev. Lett. 56, 278 (1986)CrossRefADSGoogle Scholar
  2. 2.
    Ciufolini I.: N. Cim. A 109, 1709 (1996)CrossRefADSGoogle Scholar
  3. 3.
    Ciufolini, I.: LARES/WEBER-SAT, frame-dragging and fundamental physics (preprint, 2004). (gr-qc/0412001v3)Google Scholar
  4. 4.
    Ciufolini, I.: On the orbit of the LARES satellite (preprint, 2006). (gr-qc/0609081v1)Google Scholar
  5. 5.
    Ciufolini I. et al.: LARES Phase A. University La Sapienza, Rome (1998)Google Scholar
  6. 6.
    Ciufolini, I.: Downloadable at http://www.infn.it/indexen.php→ASTROPARTICLEPHYSICS→ Calendarioriunioni→Roma,30gennaio2008→14:30AggiornamentoLARES(20’)→lares_dellagnello. pdf, p. 17 (2008)
  7. 7.
    Everitt C.W.F.: The Gyroscope Experiment I. In: General, description, analysisofgyroscopeperformance. Bertotti, B. (eds) Proc. Int. School Phys. “Enrico Fermi” Course LVI, pp. 331–60. New Academic Press, New York (1974)Google Scholar
  8. 8.
    Everitt C.W.F. et al.: Gravity Probe B: Countdown to Launch in Gyros, Clocks. In: Lämmerzahl, C., Everitt, C.W.F., Hehl, F.W. (eds) Interferometers...: Testing Relativistic Gravity in Space, pp. 52–82. Springer, Berlin (2001)CrossRefGoogle Scholar
  9. 9.
    Förste, C., et al.: A new high resolution global gravity field model derived from combination of GRACE and CHAMP mission and altimetry/gravimetry surface gravity data. EGU General Assembly 2005 Vienna, AT, 24–29 April 2005Google Scholar
  10. 10.
    Inversi P., Vespe F.: Adv. Space Res. 14, 73 (1994)CrossRefADSGoogle Scholar
  11. 11.
    Iorio L.: Class. Quantum Grav. 19, L175 (2002)MATHCrossRefMathSciNetADSGoogle Scholar
  12. 12.
    Iorio L.: Celest. Mech. Dyn. Astron. 86, 277 (2003)MATHCrossRefADSGoogle Scholar
  13. 13.
    Iorio L.: New Astron. 10, 616 (2005)CrossRefADSGoogle Scholar
  14. 14.
    Iorio, L.: J. Cosmol. Astropart. Phys. JCAP07 (2005)008 (2005)Google Scholar
  15. 15.
    Iorio L.: Planet. Space Sci. 55, 1198 (2007)CrossRefADSGoogle Scholar
  16. 16.
    Iorio L.: Europhys. Lett. 80, 40007 (2007)CrossRefADSGoogle Scholar
  17. 17.
    Iorio L., Lucchesi D.M., Ciufolini I.: Class. Quantum Grav. 19, 4311 (2002)MATHCrossRefADSGoogle Scholar
  18. 18.
    Kaula W.M.: Theory of Satellite Geodesy. Blaisdell, Waltham (1966)Google Scholar
  19. 19.
    Lense J., Thirring H.: Phys. Z. 19, 156 (1918)Google Scholar
  20. 20.
    Lucchesi D.M.: Planet. Space Sci. 49, 447 (2001)CrossRefADSGoogle Scholar
  21. 21.
    Lucchesi D.M.: Planet. Space Sci. 50, 1067 (2002)CrossRefADSGoogle Scholar
  22. 22.
    Lucchesi D.M.: Geophys. Res. Lett. 30, 1957 (2003)CrossRefADSGoogle Scholar
  23. 23.
    Lucchesi D.M.: Celest. Mech. Dyn. Astron. 88, 269 (2004)MATHCrossRefADSGoogle Scholar
  24. 24.
    Lucchesi, D.M., Paolozzi, A.: A cost effective approach for LARES satellite XVI Congresso Nazionale AIDAA, Palermo, IT, 24–28 September 2001Google Scholar
  25. 25.
    Lucchesi D.M., Ciufolini I., Andrés J.I., Pavlis E.C., Peron R., Noomen R., Currie D.G.: Planet. Space Sci. 52, 699 (2004)CrossRefADSGoogle Scholar
  26. 26.
    Mashhoon B.: Gravitoelectromagnetism: a brief review. In: Iorio, L. (eds) The Measurement of Gravitomagnetism: A Challenging Enterprise., pp. 29–39. NOVA, Hauppauge (2007)Google Scholar
  27. 27.
    Mayer-Gürr, T., Eicker, A., Ilk, K.-H.: ITG-GRACE02s: a GRACE gravity field derived from short arcs of the satellite’s orbit. In: First Int. Symp. of the International Gravity Field Service “Gravity field of the earth”, Istanbul, TR, 28 August–1 September 2006Google Scholar
  28. 28.
    Mayer-Gürr, T.: ITG-Grace03s: the latest GRACE gravity field solution computed in Bonn. In: Joint Int. GSTM and DFG SPP Symp., Potsdam, D, 15–17 October 2007. http://www.geod.uni-bonn.de/itg-grace03.html
  29. 29.
    Milani A., Nobili A.M., Farinella P.: Non-Gravitational Perturbations and Satellite Geodesy. Adam Hilger, Bristol (1987)MATHGoogle Scholar
  30. 30.
    Pavlis, N.K., et al.: Paper presented at the 2008 General Assembly of the European Geosciences Union, Vienna, 13–18 April 2008Google Scholar
  31. 31.
    Pfister H.: Gen. Relativ. Gravit. 39, 1735 (2007)MATHCrossRefMathSciNetADSGoogle Scholar
  32. 32.
    Pugh, G.E.: WSEG Research Memorandum No. 11 (1959)Google Scholar
  33. 33.
    Reigber Ch., Schmidt R., Flechtner F., König R., Meyer U., Neumayer K.-H., Schwintzer P., Zhu S.Y.: J. Geodyn. 39, 1 (2005)CrossRefGoogle Scholar
  34. 34.
    Ries, J.C., Eanes, R.J., Watkins, M.M., Tapley, B.: Joint NASA/ASI Study on Measuring the Lense–Thirring Precession Using a Second LAGEOS Satellite. CSR-89-3. The University of Texas at Austin: Center for Space Research (1989)Google Scholar
  35. 35.
    Ries J.C., Eanes R.J., Tapley B.D.: Lense–Thirring precession determination from laser ranging to artificial satellites nonlinear gravitodynamics. In: Ruffini, R.J., Sigismondi, C. (eds) The Lense–Thirring Effect., pp. 201–211. World Scientific, Singapore (2003)Google Scholar
  36. 36.
    Ruggiero, M.L., Tartaglia, A.: N. Cim. B 1179, 743 (2002)ADSGoogle Scholar
  37. 37.
    Schiff L.: Phys. Rev. Lett. 4, 215 (1960)CrossRefADSGoogle Scholar
  38. 38.
    Tapley B.D. et al.: J. Geod. 79, 467 (2005)CrossRefADSGoogle Scholar
  39. 39.
    Tapley, B.D., Ries, J., Bettadpur, S., Chambers, D., Cheng, M., Condi, F., Poole, S.: American Geophysical Union, Fall Meeting, abstract #G42A-03 (2007)Google Scholar
  40. 40.
    Van Patten R.A., Everitt C.W.F.: Phys. Rev. Lett. 36, 629 (1976)CrossRefADSGoogle Scholar
  41. 41.
    Van Patten R.A., Everitt C.W.F.: Celest. Mech. Dyn. Astron. 13, 429 (1976)Google Scholar
  42. 42.
    Vespe F.: Adv. Space Res. 23, 699 (1999)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.INFN-Sezione di PisaBari (BA)Italy

Personalised recommendations