Advertisement

General Relativity and Gravitation

, Volume 41, Issue 6, pp 1345–1353 | Cite as

Confronting Finsler space–time with experiment

  • Claus LämmerzahlEmail author
  • Dennis Lorek
  • Hansjörg Dittus
Research Article

Abstract

Within all approaches to quantum gravity small violations of the Einstein Equivalence Principle are expected. This includes violations of Lorentz invariance. While usually violations of Lorentz invariance are introduced through the coupling to additional tensor fields, here a Finslerian approach is employed where violations of Lorentz invariance are incorporated as an integral part of the space–time metrics. Within such a Finslerian framework a modified dispersion relation is derived which is confronted with current high precision experiments. As a result, Finsler type deviations from the Minkowskian metric are excluded with an accuracy of 10−16.

Keywords

Special Relativity Finsler geometry Isotropy of space Michelson Morley experiment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Will C.: Theory and Experiment in Gravitational Physics, Revised Edition. Cambridge University Press, Cambridge (1993)Google Scholar
  2. 2.
    Lämmerzahl C.: Appl. Phys. B 634, 551 (2006)CrossRefGoogle Scholar
  3. 3.
    Colladay D., Kostelecky V.A.: Phys. Rev. D 55, 6760 (1997)CrossRefADSGoogle Scholar
  4. 4.
    Lämmerzahl C., Macías A., Müller H.: Phys. Rev. D 71, 025007 (2005)CrossRefADSGoogle Scholar
  5. 5.
    Hehl F.W., von der Heyde P., Kerlick G.D.: Rev. Mod. Phys. 48, 393 (1976)CrossRefADSGoogle Scholar
  6. 6.
    Robertson H.P.: Rev. Mod. Phys. 21, 378 (1949)zbMATHCrossRefADSGoogle Scholar
  7. 7.
    Mansouri R., Sexl R.U.: Gen. Rel. Grav. 8, 497 (1977)CrossRefADSGoogle Scholar
  8. 8.
    Roxburgh I.W.: Rep. Math. Phys. 31, 171 (1992)zbMATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Gibbons G.W., Gomis J., Pope C.N.: Phys. Rev. D 76, 081701 (2007)CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Girelli F., Liberati S., Sindoni L.: Phys. Rev. D 75, 064015 (2007)CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Kilmister D.A., Stephenson G.: Nuovo Cimento 11(Suppl. 91), 118 (1954)MathSciNetGoogle Scholar
  12. 12.
    Rutz S.F.: Gen. Rel. Grav. 25, 1139 (1993)zbMATHCrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Asanov G.S.: Finsler Geometry, Relativity and Gauge Theories. Reidel, Dordrecht (1985)zbMATHGoogle Scholar
  14. 14.
    Perlick V.: Gen. Rel. Grav. 38, 365 (2006)zbMATHCrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Ehlers J., Pirani F.A.E., Schild A.: In: O’Raifeartaigh L. (eds) General Relativity, Papers in Honour of J. In: (eds) L., Synge. Clarendon Press, Oxford (1972)Google Scholar
  16. 16.
    Riemann, G.: Habilitationsvorlesung. University of Göttingen, (published 1892, Leipzig) (1854)Google Scholar
  17. 17.
    Finsler, P.: Dissertation, University of Göttingen, (printed 1951, Birkhäuser, Basel) (1918)Google Scholar
  18. 18.
    Rund H.: The Differential Geometry of Finsler Spaces. Springer, New York (1959)zbMATHGoogle Scholar
  19. 19.
    Coley A.A.: Gen. Rel. Grav. 14, 1107 (1982)zbMATHCrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Roxburgh I.W.: Gen. Rel. Grav. 23, 1071 (1991)zbMATHCrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Beem J.K.: Can. J. Math 22, 1035 (1970)zbMATHMathSciNetGoogle Scholar
  22. 22.
    Bao D., Chern S.S., Shen Z.: An Introduction to Riemann–Finsler Geometry. Springer, Berlin (2000)zbMATHGoogle Scholar
  23. 23.
    Audretsch J., Lämmerzahl C.: In: Majer U., Schmidt H.-J. (eds.) Semantical Aspects of Space–Time Geometry., p. 21. BI Verlag, Mannheim (1993)Google Scholar
  24. 24.
    Müller H., Braxmaier C., Herrmann S., Peters A., Lämmerzahl C.: Phys. Rev. D 67, 056006 (2003)CrossRefADSGoogle Scholar
  25. 25.
    Müller H., Stanwix P.L., Tobar M.E., Ivanov E., Wolf P., Herrmann S., Senger A., Kovalchik E., Peters A.: Phys. Rev. Lett. 99, 050401 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Claus Lämmerzahl
    • 1
    Email author
  • Dennis Lorek
    • 1
  • Hansjörg Dittus
    • 1
    • 2
  1. 1.ZARMUniversity of BremenBremenGermany
  2. 2.German Aerospace CenterInstitute of Space SystemsBremenGermany

Personalised recommendations