General Relativity and Gravitation

, Volume 41, Issue 6, pp 1233–1247 | Cite as

On the gravitational angular momentum of rotating sources

Research Article

Abstract

The gravitational energy–momentum and angular momentum satisfy the algebra of the Poincaré group in the full phase space of the teleparallel equivalent of general relativity. The expression for the gravitational energy–momentum may be written as a surface integral in the three-dimensional spacelike hypersurface, whereas the definition for the angular momentum is given by a volume integral. It turns out that in practical calculations of the angular momentum of the gravitational field generated by localized sources like rotating neutron stars, the volume integral reduces to a surface integral, and the calculations can be easily carried out. Similar to previous investigations in the literature, we show that the total angular momentum is finite provided a certain asymptotic behaviour is verified. We discuss the dependence of the gravitational angular momentum on the frame, and argue that it is a measure of the dragging of inertial frames.

Keywords

Teleparallelism Gravitational angular momentum Gravitational energy-momentum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maluf J.W., Faria F.F., Ulhoa S.C.: Class. Quantum Grav. 24, 2743–2753 (2007) [arXiv:0704.0986]MATHCrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Lanczos C.: The Variational Principles of Mechanics. Dover, New York (1986)Google Scholar
  3. 3.
    Goldstein H.: Classical Mechanics. Addison-Wesley, Reading (1980)MATHGoogle Scholar
  4. 4.
    Brown J.D., York J.W. Jr: Phys. Rev. D 40, 3312 (1989)CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Maluf J.W., da Rocha-Neto J.F., Toríbio T.M.L.: Castello-Branco, K.H.: Phys. Rev. D 65, 124001 (2002) [gr-qc/0204035]CrossRefADSGoogle Scholar
  6. 6.
    Maluf J.W., Ulhoa S.C., Faria F.F., da Rocha-Neto J.F.: Class. Quantum Grav. 23, 6245–6256 (2006) [gr-qc/0609018]MATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Maluf J.W., Veiga M.V.O., da Rocha-Neto J.F.: Gen. Relativ. Gravit. 39, 227–240 (2007) [gr-qc/0507122]MATHCrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Beig R., ó Murchadha N.: Ann. Phys. (New York) 174, 463 (1987)MATHCrossRefADSGoogle Scholar
  9. 9.
    Szabados L.B.: Class. Quantum Grav. 20, 2627–2661 (2003) [gr-qc/0302033]MATHCrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Maluf J.W., Faria F.F.: Ann. Phys. (Berlin) 14, 723–732 (2005) [gr-qc/0504077]MATHCrossRefGoogle Scholar
  11. 11.
    Maluf J.W., da Rocha-Neto J.F.: Phys. Rev. D 64, 084014 (2001) [gr-qc/0002059]CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Arnowitt, R., Deser, S., Misner, C.W. In: Witten, L. (ed.) Gravitation: An Introduction to Current Research, Wiley, New York (1962)Google Scholar
  13. 13.
    Adams R.C., Cohen J.M., Adler R.J., Sheffield C.: Ap. J. 192, 525–528 (1974)CrossRefADSGoogle Scholar
  14. 14.
    Glendenning N.K.: Compact Stars: Nuclear Physics, Particle Physics and General Relativity, 2nd edn. Springer, New York (2000)Google Scholar
  15. 15.
    Schutz B.F.: A First Course in General Relativity. Cambridge University Press, Cambridge (1990)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Instituto de FísicaUniversidade de BrasíliaBrasíliaBrazil

Personalised recommendations