Advertisement

General Relativity and Gravitation

, Volume 41, Issue 6, pp 1437–1454 | Cite as

Race for the Kerr field

  • G. Dautcourt
Open Access
History

Abstract

Roy P. Kerr has discovered his celebrated metric 45 years ago, yet the problem to find a generalization of the Schwarzschild metric for a rotating mass was faced much earlier. Lense and Thirring, Bach, Andress, Akeley, Lewis, van Stockum and others have tried to solve it or to find an approximative solution at least. In particular Achilles Papapetrou, from 1952 to 1961 in Berlin, was interested in an exact solution. He directed the author in the late autumn of 1959 to work on the problem. Why did these pre-Kerr attempts fail? Comments based on personal reminiscences and old notes.

Keywords

Exact solutions Axisymmetric stationary fields Kerr metric Black Hole History of physics 

Notes

Acknowledgments

The author is grateful to R. Kerr, W. Kundt, A. Rendall and G. Wallis for reading the manuscript and for comments and suggestions. He also thanks the referees for suggesting improvements.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution,and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. 1.
    Akeley E.S.: The axially symmetric stationary gravitational field. Phil. Mag. (Lond.) 11, 322–330 (1931)zbMATHGoogle Scholar
  2. 2.
    Akeley E.S.: The rotating fluid in the relativity theory. Phil. Mag. (Lond.) 11, 330–344 (1931)zbMATHGoogle Scholar
  3. 3.
    Andress W.R.: Some solutions of Einstein’s gravitational equations for systems with axial symmetry. Proc. R. Soc. (Lond.) A126, 592–602 (1933)ADSGoogle Scholar
  4. 4.
    Arnowitt R., Deser S., Misner C.W.: Coordinate invariance and energy expressions in general relativity. Phys. Rev. 167, 997–1006 (1961)CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Bach R.: Neue Lösungen der Einsteinschen Gravitationsgleichungen. A. Das Feld in der Umgebung eines langsam rotierenden kugelähnlichen Körpers von beliebiger Masse in 1. und 2. Annäherung. Math. Z. 13, 119–133 (1922)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Barnes A.: Some restrictions on the symmetry groups of axially symmmetric space–times. Class. Quant. Grav. 18, 5511–5520 (2001)zbMATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Bergamini R., Viaggiu S.: A novel derivation for Kerr metric in Papapetrou gauge. Class. Quant. Grav. 21, 4567–4573 (2004)zbMATHCrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Buchdahl H.A.: Reciprocal static solutions of the equations of the gravitational field. Aust. J. Phys. 9, 13–18 (1956)zbMATHADSMathSciNetGoogle Scholar
  9. 9.
    Buchdahl H.A.: Reciprocal static metrics and scalar fields in the general theory of relativity. Phys. Rev. 115, 1325–1328 (1959)zbMATHCrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Carter B.: Killing horizons and orthogonally transitive groups in space–time. J. Math. Phys. 10, 70–81 (1969)zbMATHCrossRefADSGoogle Scholar
  11. 11.
    Carter B.: The commutation property of a stationary, axisymmetric system. Commun. Math. Phys. 17, 233–238 (1970)zbMATHCrossRefADSGoogle Scholar
  12. 12.
    Chandrasekhar S.: The Mathematical Theory of Black Holes. Oxford University Press, New York (1983)zbMATHGoogle Scholar
  13. 13.
    Corinaldesi E., Papapetrou A.: Spinning test particles in general relativity: II. Proc. R. Soc. A 64, 259–268 (1952)Google Scholar
  14. 14.
    Dautcourt G.: Sur la solution de l’équation d’Einstein g μ+ν−;ρ = 0. C. R. Acad. Sci. Paris 249, 2159–2161 (1959)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Dautcourt G.: Energie, Impuls und Drehimpuls in der allgemeinen Relativitätstheorie. Ann. Phys. (Leipz.) 9, 309–317 (1961)CrossRefADSGoogle Scholar
  16. 16.
    Ehlers J., Kundt W.: Exact solutions of the gravitational field equations. In: Witten, L. (eds) Gravitation: An Introduction to Current Research, pp. 49–101. Wiley, New York (1962)Google Scholar
  17. 17.
    Ehlers, J.: Konstruktionen und Charakterisierung von Lösungen der Einsteinschen Gravitationsfeldgleichungen. Dissertation Hamburg (1957)Google Scholar
  18. 18.
    Ehlers, J.: Transformations of static exterior solutions of Einstein’s gravitational field equations into different solutions by means of conformal mappings. Colloques Int. C.N.R.S. Les théories relativistes de la gravitation, vol. 91, p. 275 (1961)Google Scholar
  19. 19.
    Ernst F.J.: New formulation of the axially symmetric gravitational field problem. Phys. Rev. 167, 1175–1178 (1968)CrossRefADSGoogle Scholar
  20. 20.
    Gaffet B.: The Einstein equations with two commuting Killing vectors. Class. Quant. Grav. 7, 2017–2044 (1990)zbMATHCrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Gariel J., Marcilhacy G., Santos N.O.: Stationary axisymmetric solutions involving a third order equation irreducible to Painlevé transcendents. J. Math. Phys. 49, 022501 (2008)CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    Geroch R.: A method for generating solutions of Einstein’s equations. J. Math. Phys. 12, 918–924 (1970)CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    Geroch R.: A method for generating solutions of Einstein’s equation: II. J. Math. Phys. 13, 394–404 (1970)CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    Harrison B.K.: Exact three-variable solutions of the field equations of general relativity. Phys. Rev. 116, 1285–1296 (1959)zbMATHCrossRefADSMathSciNetGoogle Scholar
  25. 25.
    Hoffman R.B.: Stationary “non-canonical” solutions of the Einstein vacuum field equations. J. Math. Phys. 10, 953–956 (1969)zbMATHCrossRefADSGoogle Scholar
  26. 26.
    Jordan, P.: Research on the theory of general relativity. Mimeographed Notes, vol. 61(514) 1233. Air Research and Development Command, European Office, Air Force Contract AF (1958)Google Scholar
  27. 27.
    Kerr R.P.: Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 11, 237–238 (1963)zbMATHCrossRefADSMathSciNetGoogle Scholar
  28. 28.
    Kerr R.P.: Gravitational collapse and rotation. In: Robinson, I., Schild, A., Schucking, E.L. (eds) Quasi-Stellar Sources and Gravitational Collapse, pp. 99–102. University of Chicago Press, Chicago (1965)Google Scholar
  29. 29.
    Kerr, R.P., Schild, A.: A new class of vacuum solutions of the Einstein field equations. In: Atti del Convegno Sulla Relativita Generale: Problemi dell’Energia e Onde Gravitazionali. G. Barbera, Florence (1965)Google Scholar
  30. 30.
    Kerr, R.P.: Discovering the Kerr und Kerr-Schild metrics. arXiv0706.1109v1 [gr-qc]Google Scholar
  31. 31.
    Kordas P.: Aspects of solution-generatic techniques for space–times with two commuting killing vectors. Class. Quant. Grav. 31, 1941–1984 (1998)MathSciNetGoogle Scholar
  32. 32.
    Kundt W., Trümper M.: Orthogonal decomposition of axi-symmetric stationary space–times. Z. Phys. 192, 419–422 (1966)CrossRefADSGoogle Scholar
  33. 33.
    Lanczos K.: Über eine stationäre Kosmologie im Sinne der Einsteinschen Gravitationstheorie. Z. Phys 21, 73–110 (1924) [reprinted as Golden Oldie. Gen. Relativ. Grav. 29(3), 363 (1997)]CrossRefADSGoogle Scholar
  34. 34.
    Landau L.D., Lifschitz E.M.: Klassische Feldtheorie. Akademie-Verlag, Berlin (1963)Google Scholar
  35. 35.
    Lense J., Thirring H.: Über den Einfluß der Eigenrotation auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Phys. Z. 19, 156–163 (1918) [reprinted as Golden Oldie. Gen. Relativ. Grav. 16(8), 727–741 (1984)]Google Scholar
  36. 36.
    Lewis T.: Some special solutions of the equations of axially symmetric gravitational fields. Proc. R. Soc. Lond. A136, 176–192 (1932)ADSGoogle Scholar
  37. 37.
    Papapetrou A.: Spinning test particles in general relativity: I. Proc. R. Soc. A 64, 248–258 (1952)Google Scholar
  38. 38.
    Papapetrou A.: Eine rotationssymmetrische Lösung in der allgemeinen Relativitätstheorie. Ann. Phys. (Leipz.) 12, 309–315 (1953)zbMATHCrossRefADSMathSciNetGoogle Scholar
  39. 39.
    Papapetrou A.: Quelques remarques sur les champs gravitationnels stationnaires. C. R. Acad. Sci. Paris 257, 2797–2800 (1963)zbMATHMathSciNetGoogle Scholar
  40. 40.
    Papapetrou A.: Champs gravitationnels stationnaires à symétrie axiale. C. R. Acad. Sci. Paris 285, 90–93 (1964)MathSciNetGoogle Scholar
  41. 41.
    Papapetrou A.: Champs gravitationnels stationnaires à symétrie axiale. Ann. Inst. Henri Poincare IV, 83–105 (1966)Google Scholar
  42. 42.
    Plebanski J., Krasinski A.: An Introduction to General Relativity and Cosmology, Chap. 20. Cambridge University Press, London (2006)Google Scholar
  43. 43.
    Rinne O., Stewart J.M.: A strongly hyperbolic and regular reduction of Einstein’s equations for axisymmetric space–times. Class. Quant. Grav. 22, 1143–1166 (2005)zbMATHCrossRefADSMathSciNetGoogle Scholar
  44. 44.
    Schwarzschild, K.: Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie. Sitz. Preuss. Akad. Wiss. 189 (1916)Google Scholar
  45. 45.
    Stephani H., Kramer D., MacCallum M., Hoenselaers C., Herlt E.: Exact Solutions of Einstein’s Field Equations, 2nd edn. Cambridge University Press, London (2003)zbMATHGoogle Scholar
  46. 46.
    van Stockum W.J.: The gravitational field of a distribution of particles rotating about an axis of symmetry. Proc. R. Soc. Edinb. 57, 135–154 (1937)zbMATHGoogle Scholar
  47. 47.
    Thorne, K.S.: Black holes and time warps. Foreword by Stephen Hawking, pp. 341–342. W.W.Norton & Company, New York (2004)Google Scholar
  48. 48.
    Wald R.M.: General Relativity. The University of Chicago Press, Chicago (1984)zbMATHGoogle Scholar

Copyright information

© The Author(s) 2008

Authors and Affiliations

  1. 1.Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-InstitutGolmGermany

Personalised recommendations