General Relativity and Gravitation

, Volume 41, Issue 5, pp 1025–1049 | Cite as

Effects of the quantization ambiguities on the Big Bounce dynamics

  • Orest Hrycyna
  • Jakub Mielczarek
  • Marek Szydłowski
Research Article


In this paper, we investigate dynamics of the modified loop quantum cosmology models using dynamical systems methods. Modifications considered come from the choice of the different field strength operator and result in different forms of the effective Hamiltonian. Such an ambiguity of the choice of this expression from some class of functions is allowed in the framework of loop quantization. Our main goal is to show how such modifications can influence the bouncing universe scenario in the loop quantum cosmology. In effective models considered we classify all evolutional paths for all admissible initial conditions. The dynamics is reduced to the form of a dynamical system of the Newtonian type on a two-dimensional phase plane. These models are equivalent dynamically to the FRW models with the decaying effective cosmological term parameterized by the canonical variable p (or by the scale factor a). We demonstrate that the evolutional scenario depends on the geometrical constant parameter Λ as well as the model parameter n. We find that for the positive cosmological constant there is a class of oscillating models without the initial and final singularities. The new phenomenon is the appearance of curvature singularities for the finite values of the scale factor, but we find that for the positive cosmological constant these singularities can be avoided. The values of the parameter n and the cosmological constant differentiate asymptotic states of the evolution. For the positive cosmological constant the evolution begins at the asymptotic state in the past represented by the de Sitter contracting (deS) spacetime or the static Einstein universe H = 0 or H =  − ∞ state and reaches the de Sitter expanding state (deS+), the state H = 0 or H =  + ∞ state. In the case of the negative cosmological constant we obtain the past and future asymptotic states as the Einstein static universes.


Loop quantum cosmology Big bounce Dynamical systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gasperini, M., Veneziano, G.: String Theory and Pre-big bang Cosmology (2007). arXiv:hep-th/0703055Google Scholar
  2. 2.
    Bojowald M.: Living Rev. Relativ. 8, 11 (2005) arXiv:gr-qc/0601085ADSGoogle Scholar
  3. 3.
    Bojowald M.: AIP Conf. Proc. 910, 294 (2007) arXiv:gr-qc/0702144CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Ashtekar A., Pawlowski T., Singh P.: Phys. Rev. Lett. 96, 141301 (2006) arXiv:gr-qc/0602086CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Bojowald M.: Phys. Rev. D74, 081301 (2007) arXiv:gr-qc/0608100ADSMathSciNetGoogle Scholar
  6. 6.
    Ashtekar A., Pawlowski T., Singh P.: Phys. Rev. D74, 084003 (2006) arXiv:gr-qc/0607039ADSMathSciNetGoogle Scholar
  7. 7.
    Singh P., Vandersloot K., Vereshchagin G.V.: Phys. Rev. D74, 043510 (2006) arXiv:gr-qc/0606032ADSGoogle Scholar
  8. 8.
    Mielczarek J., Stachowiak T., Szydlowski M.: Phys. Rev. D77, 123506 (2008) arXiv:0801.0502 [gr-qc]ADSMathSciNetGoogle Scholar
  9. 9.
    Mielczarek J., Szydlowski M.: Phys. Rev. D77, 124008 (2008) arXiv:0801.1073[gr-qc]ADSMathSciNetGoogle Scholar
  10. 10.
    Corichi, A., Singh, P.: Is loop quantization in cosmology unique? (2008). arXiv:0805.0136 [gr-qc]Google Scholar
  11. 11.
    Ashtekar A., Pawlowski T., Singh P., Vandersloot K.: Phys. Rev. D75, 024035 (2007) arXiv:gr-qc/0612104ADSMathSciNetGoogle Scholar
  12. 12.
    Ashtekar A., Bojowald M., Lewandowski J.: Adv. Theor. Math. Phys. 7, 233 (2003) arXiv:gr-qc/0304074MathSciNetGoogle Scholar
  13. 13.
    Vandersloot K.: Phys. Rev. D71, 103506 (2005) arXiv:gr-qc/0502082ADSMathSciNetGoogle Scholar
  14. 14.
    Ashtekar A., Lewandowski J.: Class. Quant. Grav. 14, A55 (1997) arXiv:gr-qc/9602046MATHCrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Bojowald, M.: Quantum nature of cosmological bounces (2008). arXiv:0801.4001 [gr-qc]Google Scholar
  16. 16.
    Bojowald M.: Gen. Relativ. Gravit. 38, 1771 (2006) arXiv:gr-qc/0609034MATHCrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Bojowald M., Hossain G.M.: Phys. Rev. D 77, 023508 (2008) arXiv:0709.2365 [gr-qc]CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Ashtekar A., Pawlowski T., Singh P.: Phys. Rev. D 73, 124038 (2006) arXiv:gr-qc/0604013CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Perko L.: Differential Equations and Dynamical Systems. Springer, New York (1991)MATHGoogle Scholar
  20. 20.
    Freese, K., Brown, M.G., Kinney, W.H.: The Phantom Bounce: A New Proposal for an Oscillating Cosmology (2008). arXiv:0802.2583 [astro-ph]Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Orest Hrycyna
    • 1
  • Jakub Mielczarek
    • 2
    • 3
  • Marek Szydłowski
    • 2
    • 4
  1. 1.Department of Theoretical Physics, Faculty of PhilosophyThe John Paul II Catholic University of LublinLublinPoland
  2. 2.Astronomical ObservatoryJagiellonian UniversityKrakówPoland
  3. 3.Institute of PhysicsJagiellonian UniversityKrakówPoland
  4. 4.Marc Kac Complex Systems Research CentreJagiellonian UniversityKrakówPoland

Personalised recommendations