Analytic observation of a star orbiting a Schwarzschild black hole

Research Article


A star orbiting a Schwarzschild black hole can be used as a toy model for an educational study of the relativistic effects like bending of light, geodesic precession, and frequency shift. Additionally, the finiteness of the speed of light plays a crucial role for the visual appearance of the star. We will develop an analytic method to show the difference between the actual and the apparent position of the star depending on the observation time and the observer’s inclination to the orbital plane.


Schwarzschild black hole Analytic geodesics Circular orbits 


  1. 1.
    Chandrasekhar S.: The Mathematical Theory of Black Holes. Clarendon Press, Oxford (1983)MATHGoogle Scholar
  2. 2.
    Rindler W.: Relativity—Special, General and Cosmology. Oxford University Press, NY (2001)Google Scholar
  3. 3.
    Wald R.M.: General Relativity. The University of Chicago Press, Chicago (1984)MATHGoogle Scholar
  4. 4.
    Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W.H.Freeman, San Francisco (1973)Google Scholar
  5. 5.
    Cunningham C.T., Bardeen J.M.: The optical appearance of a star orbiting an extreme Kerr black hole. Ap. J. 183, 237–264 (1973)CrossRefADSGoogle Scholar
  6. 6.
    de Felice F., Nobili L., Calvani M.: Black-hole physics: some effects of gravity on the radiation emission. Astron. Astrophys. 30, 111–118 (1974)ADSGoogle Scholar
  7. 7.
    Luminet J.-P.: Image of a spherical black hole with thin accretion disk. Astron. Astrophys. 75, 228–235 (1979)ADSGoogle Scholar
  8. 8.
    Bao G., Hadrava P., Østgaard E.: Multiple images and light curves of an emitting source on a relativistic eccentric orbit around a black hole. Ap. J. 425, 63–71 (1994)CrossRefADSGoogle Scholar
  9. 9.
    Broderick A.E., Loeb A.: Imaging bright-spots in the accretion flow near the black hole horizon of Sgr A*. MNRAS. 363, 353–362 (2005)ADSGoogle Scholar
  10. 10.
    Bozza V.: Extreme gravitational lensing by supermassive black hole. Nuovo Cimento B. 122, 547–556 (2007)ADSMathSciNetGoogle Scholar
  11. 11.
    Čadež A., Kostić U.: Phys. Rev. D. 72, 104024 (2005)CrossRefMathSciNetADSGoogle Scholar
  12. 12.
    Müller, T.: Visualisierung in der Relativitätstheorie. Ph.D. thesis, Eberhard-Karls-Universität Tübingen (2006), in germanGoogle Scholar
  13. 13.
    Nakahara M.: Geometry, Topology and Physics. IOP Publishing Ltd, Bristol (1990)MATHCrossRefGoogle Scholar
  14. 14.
    Lawden D.F.: Elliptic Functions and Applications. Springer, New York (1989)MATHGoogle Scholar
  15. 15.
    Weiskopf, D.: Visualization of Four-Dimensional Spacetimes. Ph.D. thesis, Eberhard-Karls-Universität Tübingen (2001)Google Scholar
  16. 16.
    Lampa A.: Wie erscheint nach der Relativitätstheorie ein bewegter Stab einem ruhenden Beobachter? Z. Physik. 27, 138–148 (1924)CrossRefADSGoogle Scholar
  17. 17.
    Penrose R.: The apparent shape of a relativistically moving sphere. Proc. Camb. Philos. Soc. 55, 137–139 (1959)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Terrell J.: Invisibility of the Lorentz contraction. Phys. Rev. 116, 1041–1045 (1959)CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Hollenbach D.: Appearance of a rapidly moving sphere: a problem for undergraduates. Am. J. Phys. 44, 91–93 (1976)CrossRefADSGoogle Scholar
  20. 20.
    Sakina K., Chiba J.: Parallel transport of a vector along a circular orbit in Schwarzschild space-time. Phys. Rev. D. 19, 2280–2282 (1979)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Visualisierungsinstitut der Universität StuttgartStuttgartGermany

Personalised recommendations