Advertisement

General Relativity and Gravitation

, Volume 41, Issue 3, pp 525–539 | Cite as

Multipole analysis of kicks in collision of spinning binary black holes

  • Sarah H. Miller
  • Richard A. MatznerEmail author
Research Article

Abstract

Thorne and Kidder give expressions which allow for analytical estimates of the “kick”, i.e. the recoil, produced from asymmetrical gravitational radiation during the interaction of black holes, or in fact any gravitating compact bodies. (The Thorne-Kidder formula uses momentum flux calculations based on the linearized General Relativity of gravitational radiation). We specifically treat kicks arising in the binary interaction of equal mass black holes, when at least one of the black holes has significant spin, a. Such configurations can produce very large kicks in computational simulations. We consider both fly-by and quasicircular orbits. For fly-by orbits we find substantial kicks from those Thorne-Kidder terms which are linear in a. For the quasi-circular case, we consider in addition the nonlinear contribution (O(a 2)) to the kicks, and provide a dynamical explanation for such terms discovered and displayed by [2]. However, in the cases of maximal kick velocities, the dependence on spin is largely linear (reproduced in numerical results [6]).

Keywords

Black hole physics Galaxies: nuclei Gravitation Gravitational waves Relativity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blanchet L., Damour T., Schaefer G.: MNRAS 242, 289 (1990)zbMATHADSGoogle Scholar
  2. 2.
    Boyle, L., Kesden, M.: ArXiv e-prints, 712, arXiv:0712.2819 (2007)Google Scholar
  3. 3.
    Campanelli M., Lousto C.O., Zlochower Y., Krishnan B., Merritt D.: Phys. Rev. D 75, 064030 (2007)CrossRefADSGoogle Scholar
  4. 4.
    Matteo T., Colberg J., Springel V., Hernquist L., Sijacki D.: ApJ 676, 33 (2008)CrossRefADSGoogle Scholar
  5. 5.
    Healy, J., Herrmann, F., Hinder, I., Shoemaker, D.M., Laguna, P., Matzner, Richard A.: [arXiv:0807. 3292] (2008)Google Scholar
  6. 6.
    Herrmann F., Hinder I., Shoemaker D., Laguna P., Matzner R.A.: ApJ 661, 430 (2007)CrossRefADSGoogle Scholar
  7. 7.
    Herrmann F., Hinder I., Shoemaker D.M., Laguna P., Matzner R.A.: Phys. Rev. D 76, 084032 (2007)CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Kidder L.E.: Phys. Rev. D 52, 821 (1995)CrossRefADSGoogle Scholar
  9. 9.
    Komossa S., Zhou H., Lu H.: ApJ 678, L81 (2008)CrossRefADSGoogle Scholar
  10. 10.
    Misner C.W., Thorne K.S., Wheeler J.A.: Gravitation. W.H. Freeman, New York (1973)Google Scholar
  11. 11.
    Oohara K., Nakamura T.: Prog. Theor. Phys. 82, 535 (1989)CrossRefADSGoogle Scholar
  12. 12.
    Pretorius, F.: Phys. Rev. Lett. 95, 121101 [arXiv:gr-qc/0507014]Google Scholar
  13. 13.
    Schnittman J.D., Buonanno A., van Meter J.R., Baker J.G., Boggs W.D., Centrella J., Kelly B.J., McWilliams S.T.: Phys Rev. D 77, 044031 (2008)CrossRefADSGoogle Scholar
  14. 14.
    Shields, G.A., Bonning, E.W.: ArXiv e-prints, 802, arXiv:0802.3873 (2008)Google Scholar
  15. 15.
    Thorne K.S.: Rev. Mod. Phys. 52, 299 (1980)CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Thorne, K.S.: Quantum Phys. Chaos Theory Cosmol. 101 (1996)Google Scholar
  17. 17.
    Washik, M.C., Healy, J., Herrmann, F., Hinder, I., Shoemaker, D.M., Laguna, P., Matzner, R.A.: [arXiv:0802.2520] (2008)Google Scholar
  18. 18.
    Whitaker K.E., Dokkum P.G.: ApJ 676, L105 (2008)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Physics and Center for RelativityThe University of Texas at AustinAustinUSA

Personalised recommendations