Advertisement

The Newtonian limit of spacetimes for accelerated particles and black holes

  • Jiří Bičák
  • David KofroňEmail author
Research Article

Abstract

Solutions of vacuum Einstein’s field equations describing uniformly accelerated particles or black holes belong to the class of boost-rotation symmetric spacetimes. They are the only explicit solutions known which represent moving finite objects. Their Newtonian limit is analyzed using the Ehlers frame theory. Generic spacetimes with axial and boost symmetries are first studied from the Newtonian perspective. The results are then illustrated by specific examples such as C-metric, Bonnor–Swaminarayan solutions, self-accelerating “dipole particles”, and generalized boost-rotation symmetric solutions describing freely falling particles in an external field. In contrast to some previous discussions, our results are physically plausible in the sense that the Newtonian limit corresponds to the fields of classical point masses accelerated uniformly in classical mechanics. This corroborates the physical significance of the boost-rotation symmetric spacetimes.

Keywords

Newtonian limit Boost-rotation symmetry Exact solutions 

References

  1. 1.
    Alcubierre, M., Gundlach, C., Siebel, F.: Integration of geodesics as a test bed for comparing exact and numerically generated spacetimes. In: Abstracts of Plenary Lectures and Contributed Papers (GR15) (1997)Google Scholar
  2. 2.
    Antoci S., Liebscher D., Mihich L.: The physical meaning of the “boost-rotation symmetric” solutions within the general interpretation of Einstein’s theory of gravitation. Gen. Relat. Gravit. 38, 15–22 (2006)CrossRefADSMathSciNetzbMATHGoogle Scholar
  3. 3.
    Bičák, J., Pravda, V.: Spinning C metric: Radiative spacetime with accelerating, rotating black holes. Phys. Rev. D 60, 044004, 10 p (1999)Google Scholar
  4. 4.
    Bičák, J.: Gravitational radiation from uniformly accelerated particles in general relativity. Proc. R. Soc. Lond. A 302, 201–224 (1968)ADSGoogle Scholar
  5. 5.
    Bičák, J.: Selected solutions of Einstein’s field equations: their role in general relativity and astrophysics. In: Schmidt, B.G. (ed.) Einstein’s Field Equations and Their Physical Implications. Lecture Notes in Physics, vol. 540, pp. 1–126. Springer, Berlin (2000)Google Scholar
  6. 6.
    Bičák, J., Hoenselaers C., Schmidt B.: The solutions of the Einstein equations for uniformly accelerated particles without nodal singularities. I. Freely falling particles in external fields. Proc. R. Soc. Lond. A 390, 397–409 (1983)ADSGoogle Scholar
  7. 7.
    Bičák, J., Hoenselaers C., Schmidt B.: The solutions of the Einstein equations for uniformly accelerated particles without nodal singularities. II. Self-accelerating particles. Proc. R. Soc. Lond. A 390, 411–419 (1983)ADSGoogle Scholar
  8. 8.
    Bičák, J., Pravdová A.: Symmetries of asymptotically flat electrovacuum space-times and radiation. J. Math. Phys. 39, 6011–6039 (1998)CrossRefADSMathSciNetzbMATHGoogle Scholar
  9. 9.
    Bičák, J., Reilly P., Winicour J.: Boost-rotation symmetric gravitational null cone data. Gen. Relat. Gravit. 20, 171–181 (1988)CrossRefADSGoogle Scholar
  10. 10.
    Bičák, J., Schmidt B.: Isometries compatible with gravitational radiation. J. Math. Phys. 25, 600–606 (1984)CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Bičák, J., Schmidt B.: Asymptotically flat radiative space-times with boost-rotation symmetry: The general structure. Phys. Rev. D 40, 1827–1853 (1989)CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Bondi H.: Negative mass in general relativity. Rev. Mod. Phys 29, 423–428 (1957)CrossRefADSMathSciNetzbMATHGoogle Scholar
  13. 13.
    Bonnor W.: The sources of the vacuum C-metric. Gen. Relat. Gravit. 15, 535–551 (1983)CrossRefADSMathSciNetzbMATHGoogle Scholar
  14. 14.
    Bonnor W., Swaminarayan N.: An exact solution for uniformly accelerated particles in general relativity. Z. Phys. A 177, 240–256 (1964)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Cartan E.: Les Variètès a connexion affine et La Théorie De La relativité Généralisée. Ann. Ecole Norm. 40, 326–412 (1922)Google Scholar
  16. 16.
    Cartan E.: Les Variètès a connexion affine et La Théorie De La relativité Généralisée. Ann. Ecole Norm. 41, 1–25 (1924)ADSMathSciNetGoogle Scholar
  17. 17.
    Corless R., Gonnet G., Hare D., Jeffrey D., Knuth D.: On the Lambert’s W function. Adv. Comput. Math. 5, 329–359 (1996)CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    Dowker H., Thambyahpillai S.: Many accelerating black holes. Class. Quantum Grav. 20, 127–135 (2003)CrossRefADSMathSciNetzbMATHGoogle Scholar
  19. 19.
    Dutta K., Ray S., Traschen J.: Boost mass and the mechanics of accelerated black holes. Class. Quantum Grav. 23, 335–352 (2006)CrossRefADSMathSciNetzbMATHGoogle Scholar
  20. 20.
    Ehlers J.: Examples of Newtonian limits of relativistic spacetimes. Class. Quantum Grav. 14, A119–A126 (1997)CrossRefADSMathSciNetzbMATHGoogle Scholar
  21. 21.
    Ehlers, J.: The Newtonian Limit of General Relativity. In: Understanding Physics. Copernicus Gesellschaft e.V., Katlenburg-Lindau (1998)Google Scholar
  22. 22.
    Ehlers, J.: Newtonian limit of general relativity. In: Encyclopedia of Mathematical Physics, vol. 3, pp. 503–509. Elsevier, Amsterdam (2006)Google Scholar
  23. 23.
    Ernst F.: Removal of the nodal singularity of the C-metric. J. Math. Phys. 17, 515–516 (1976)CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    Friedrichs K.: Eine invariante Formulierung des Newtonschen Gravitationsgesetzes und des Grenzübergangs vom Einsteinschen zum Newtonschen Gesetz. Math. Ann. 98, 566–575 (1927)CrossRefMathSciNetzbMATHGoogle Scholar
  25. 25.
    Gómez R., Papadopoulos P., Winicour J.: Null cone evolution of axisymmetric vacuum space-times. J. Math. Phys. 35, 4184–4204 (1994)CrossRefADSMathSciNetzbMATHGoogle Scholar
  26. 26.
    Israel W., Khan K.: Collinear particles and Bondi dipoles in general relativity. Nuov. Cim. 33, 331 (1964)CrossRefMathSciNetzbMATHGoogle Scholar
  27. 27.
    Kinnersley W., Walker M.: Uniformly accelerating charged mass in general relativity. Phys. Rev. D 2, 1359–1370 (1970)CrossRefADSMathSciNetGoogle Scholar
  28. 28.
    Lazkoz R., Valiente Kroon J.: The Newtonian limit of spacetimes describing uniformly accelerated particles. Proc. R. Soc. Lond. A 460, 995–1016 (2004)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Lazkos, R., Valiente Kroon, J.: The Newtonian limit of the spacetimes describing uniformly accelerated particles. In: Proceedings of the 10th Marcel Grossmann Meeting, Part C. World Scientific, Singapore (2005)Google Scholar
  30. 30.
    MacCallum, M.A.H.: On singularities, horizons, invariants, and the results of Antoci, Liebscher and Mihich (Gen Relativ Gravit 38, 15 (2006) and earlier) 38, 1887–1899 (2006)Google Scholar
  31. 31.
    Misner C., Thorne K., Wheeler J.: Gravitation. W.H. Freeman and Co., San Francisco (1973)Google Scholar
  32. 32.
    Pravda V., Pravdová A.: Boost-rotation symmetric spacetimes—review. Czech. J. Phys. 50, 333–375 (2000)CrossRefADSGoogle Scholar
  33. 33.
    Rindler W.: Relativity, Special, General, and Cosmological, Second edn. Oxford Univerisity Press, Oxford (2006)Google Scholar
  34. 34.
    Schmidt, B.: Private communicationGoogle Scholar
  35. 35.
    Scott S., Szekeres P.: The Curzon singularity. I: Spatial sections.. Gen. Relat. Grav. 18, 557–570 (1986)CrossRefADSMathSciNetzbMATHGoogle Scholar
  36. 36.
    Scott S., Szekeres P.: The Curzon singularity. II: Global picture.. Gen. Relat. Grav. 18, 571–583 (1986)CrossRefADSMathSciNetzbMATHGoogle Scholar
  37. 37.
    Steele, J., Lun, A.: On rational representation of stationary axisymmetric vacuum metrics I: cubic and quartic coordinates. In: Relativity Today: Proceedings of the Fourth Hungarian Workshop in Relativity (1994)Google Scholar
  38. 38.
    Stephani, H., Kramer, D., MacCallum, M.A.H., Hoenselaers, C.: Exact Solutions of Einstein’s Field Equations, 2nd edn. Cambridge University Press, Cambridge (2003)Google Scholar
  39. 39.
    Trautman, A.: Comparison of Newtonian and relativistic theories of space-times. In: Perspectives in Geometry and Relativity, p. 425. Indiana University Press, Bloomington (1966)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Institute of Theoretical Physics, Faculty of Mathematics and PhysicsCharles UniversityPrague 8Czech Republic
  2. 2.Max Planck Institute for Gravitational PhysicsAlbert Einstein InstituteGolmGermany

Personalised recommendations