General Relativity and Gravitation

, Volume 41, Issue 1, pp 39–48 | Cite as

Dual gravity and matter

  • Eric A. Bergshoeff
  • Mees de RooEmail author
  • Sven F. Kerstan
  • Axel Kleinschmidt
  • Fabio Riccioni
Open Access
Research Article


We consider the problem of finding a dual formulation of gravity in the presence of non-trivial matter couplings. In the absence of matter a dual graviton can be introduced only for linearised gravitational interactions. We show that the coupling of linearised gravity to matter poses obstructions to the usual construction and comment on possible resolutions of this difficulty.


Gravity Duality Matter 



The authors gratefully acknowledge discussions with Marc Henneaux, Olaf Hohm, Hermann Nicolai and Peter West. AK and FR would like to thank the University of Groningen for its hospitality during several visits. AK is a Research Associate of the Fonds de la Recherche Scientifique– FNRS, Belgium. The work of FR is supported by a PPARC rolling grant PP/C507145/1 and the EU Marie Curie research training network grant MRTN-CT-2004-512194.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.


  1. 1.
    Julia B., Levie J., Ray S.: Gravitational duality near de Sitter space. JHEP 0511, 025 (2005) [arXiv: hep-th/0507262]CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Leigh R.G., Petkou A.C.: Gravitational duality transformations on (A)dS4. JHEP 0711, 079 (2007) [arXiv:0704.0531 [hep-th]]CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Curtright T.: Generalized gauge fields. Phys. Lett. B 165, 304 (1985)CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Nieto J.A.: S-duality for linearized gravity. Phys. Lett. A 262, 274 (1999) [arXiv:hep-th/9910049]zbMATHCrossRefADSMathSciNetGoogle Scholar
  5. 5.
    West P.C.: E 11 and M theory. Class. Quant. Grav. 18, 4443 (2001) [arXiv:hep-th/0104081]zbMATHCrossRefADSGoogle Scholar
  6. 6.
    Hull C.M.: Duality in gravity and higher spin gauge fields. JHEP 0109, 027 (2001) [arXiv:hep-th/ 0107149]CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    West P.C.: Very extended E(8) and A(8) at low levels, gravity and supergravity. Class. Quant. Grav. 20, 2393 (2003) [arXiv:hep-th/0212291]zbMATHCrossRefADSGoogle Scholar
  8. 8.
    Bekaert X., Boulanger N.: Tensor gauge fields in arbitrary representations of GL(D,R): duality and Poincare lemma. Commun. Math. Phys. 245, 27 (2004) [arXiv:hep-th/0208058]zbMATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Henneaux M., Teitelboim C.: Duality in linearized gravity. Phys. Rev. D 71, 024018 (2005) [arXiv:gr-qc/0408101]CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Deser S., Seminara D.: Duality invariance of all free bosonic and fermionic gauge fields. Phys. Lett. B 607, 317 (2005) [arXiv:hep-th/0411169]CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Ajith K.M., Harikumar E., Sivakumar M.: Dual linearised gravity in arbitrary dimensions from Buscher’s construction. Class. Quant. Grav. 22, 5385 (2005) [arXiv:hep-th/0411202]zbMATHCrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Nurmagambetov A.J.: Duality-symmetric approach to general relativity and supergravity. SIGMA 2, 020 (2006) [arXiv:hep-th/0602145]MathSciNetGoogle Scholar
  13. 13.
    Ellwanger U.: S-dual gravity in the axial gauge. Class. Quant. Grav. 24, 785 (2007) [arXiv:hep-th/0610206]zbMATHCrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Bekaert X., Boulanger N., Henneaux M.: Consistent deformations of dual formulations of linearized gravity: a no-go result. Phys. Rev. D 67, 044010 (2003) [arXiv:hep-th/0210278]CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Deser S., Seminara D.: Free spin 2 duality invariance cannot be extended to GR. Phys. Rev. D 71, 081502 (2005) [arXiv:hep-th/0503030]CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Nurmagambetov, A.J.: Hidden symmetries of M-theory and its dynamical realization, arXiv:0802.2638 [hep-th]Google Scholar
  17. 17.
    Deser S.: Self-interaction and gauge invariance. Gen. Relat. Grav. 1, 9 (1970) [arXiv:gr-qc/0411023]CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Bunster C.W., Cnockaert S., Henneaux M., Portugues R.: Monopoles for gravitation and for higher spin fields. Phys. Rev. D 73, 105014 (2006) [arXiv:hep-th/0601222]CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Damour T., Henneaux M., Nicolai H.: E 10 and a ‘small tension expansion’ of M theory. Phys. Rev. Lett. 89, 221601 (2002) [arXiv:hep-th/0207267]CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Bergshoeff E.A., de Roo M., Kerstan S.F., Riccioni F.: IIB supergravity revisited. JHEP 0508, 098 (2005) [arXiv:hep-th/0506013]CrossRefADSGoogle Scholar
  21. 21.
    Bergshoeff E.A., de Roo M., Kerstan S.F., Ortin T., Riccioni F.: IIA ten-forms and the gauge algebras of maximal supergravity theories. JHEP 0607, 018 (2006) [arXiv:hep-th/0602280]CrossRefADSGoogle Scholar
  22. 22.
    Damour T., Kleinschmidt A., Nicolai H.: K(E 10), supergravity and fermions. JHEP 0608, 046 (2006) [arXiv:hep-th/0606105]CrossRefADSMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2008

Authors and Affiliations

  • Eric A. Bergshoeff
    • 1
  • Mees de Roo
    • 1
    Email author
  • Sven F. Kerstan
    • 1
    • 2
  • Axel Kleinschmidt
    • 3
  • Fabio Riccioni
    • 4
  1. 1.Centre for Theoretical PhysicsUniversity of GroningenGroningenThe Netherlands
  2. 2.OptiverAmsterdamThe Netherlands
  3. 3.Physique Théorique et Mathématique and International Solvay InstitutesUniversité Libre de Bruxelles, Boulevard du TriompheBruxellesBelgium
  4. 4.Department of MathematicsKing’s College LondonStrand, LondonUK

Personalised recommendations