General Relativity and Gravitation

, Volume 40, Issue 12, pp 2469–2492 | Cite as

Creation of fundamental particles in Wesson’s IMT

Research Article

Abstract

Fundamental particles, regarded as possible constituents of quarks and leptons, are described classically in the framework of the Weyl-Dirac version of Wesson’s Induced Matter Theory (IMT). There are neutral particles and particles having charge \(\pm \frac{1}{3}e\). The particles appear on the 4D brane, our universe, and are filled with an induced by the 5D bulk substance. This substance is taken to have mass density, pressure, and (if charged) charge density, and is characterized by the equation of state ρP = 0. The interior is separated from the surrounding vacuum by a spherical boundary surface where the components of the 4D metric tensor h00 = 1/h11 = 0. Outside of the boundary holds the Schwarzschild, or the Reissner–Nordstrøm metric, while the particles are characterized by Mass, Radius, Charge.

Keywords

General relativity Higher dimensions Weyl-Dirac approach Creation of particles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Einstein, A.: Ann. Phys. (Leipzig) 49, 769 (1916)ADSGoogle Scholar
  2. 2.
    Einstein, A.: The meaning of relativity, 4th edn. Princeton, (1953)Google Scholar
  3. 3.
    Wesson, P.S.: Space-time-matter. World Scientific, Singapore (1999)MATHGoogle Scholar
  4. 4.
    Seahra, S.S., Wesson, P.S.: Gen. Rel. Grav. 33, 1737 (2001)CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Seahra, S.S., Wesson, P.S.: Class. Quant. Grav. 20, 1321 (2003)MATHCrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Seahra, S.S.: Phys. Rev. D 68, 104027 (2003)CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Wesson, P.S.: Phys. Lett. B 538, 159 (2002)MATHCrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Wesson, P.S.: Gen. Rel. Grav. 38, 937 (2006)MATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Israelit, M.: Found. Phys. 35, 1725 (2005)MATHCrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Israelit, M.: Found. Phys. 35, 1769 (2005)MATHCrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Israelit, M.: Found. Phys. 37, 1628 (2007)MATHCrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Weyl, H.: Sitzungsber. Preuss. Akad. Wiss. 465 (1918)Google Scholar
  13. 13.
    Weyl, H.: Ann. Phys. (Leipzig) 59, 101 (1919)ADSGoogle Scholar
  14. 14.
    Weyl, H.: Raum, Zeit, Materie. Springer, Berlin (1923)Google Scholar
  15. 15.
    Dirac, P.A.M.: Proc. R. Soc. Lond. A 333, 403 (1973)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Rosen, N.: Found. Phys. 12, 213 (1982)CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Israelit, M.: Gen. Rel. Grav. 29, 1411 (1997)MATHCrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Israelit, M.: ibid 29, 1597 (1997)MATHADSMathSciNetGoogle Scholar
  19. 19.
    Israelit, M.: Found. Phys. 28, 205 (1998)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Israelit, M.: Hadronic J. 21, 75 (1998)MATHMathSciNetGoogle Scholar
  21. 21.
    Israelit, M.: The Weyl-Dirac Theory and Our Universe. Nova Science, Commack (1999)Google Scholar
  22. 22.
    Israelit, M., Rosen, N.: Astrophys. J. 342, 627 (1989)CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    Rosen, N., Israelit, M.: Astrophys. & Space Sc. 204, 317 (1993)MATHCrossRefADSGoogle Scholar
  24. 24.
    Einstein, A., Rosen, N.: Phys. Rev. 48, 73 (1935)MATHCrossRefADSGoogle Scholar
  25. 25.
    Israelit, M., Rosen, N.: Found. Phys. 21, 1237 (1991)CrossRefADSGoogle Scholar
  26. 26.
    Israelit, M., Rosen, N.: Found. Phys. 22, 549 (1991)CrossRefADSMathSciNetGoogle Scholar
  27. 27.
    Gliner, E.: Soviet Phys. JETP 22, 378 (1966)ADSGoogle Scholar
  28. 28.
    Gliner, E.: Soviet Phys. Dokl. 15, 559 (1970)ADSGoogle Scholar
  29. 29.
    Jalalzadeh, S.: Gen. Rel. Grav. 39, 387 (2007)MATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Physics and MathematicsUniversity of Haifa-OranimTivonIsrael

Personalised recommendations