Advertisement

General Relativity and Gravitation

, Volume 40, Issue 9, pp 1899–1911 | Cite as

Hawking radiation and black hole entropy in a gravity’s rainbow

  • Cheng-Zhou LiuEmail author
  • Jian-Yang Zhu
Open Access
Research Article

Abstract

In the context of gravity’s rainbow, Planck scale correction on Hawking radiation and black hole entropy in Parikh and Wilczk’s tunneling framework is studied. We calculate the tunneling probability of massless particles in the modified Schwarzschild black holes from gravity’s rainbow. In the tunneling process, when a particle gets across the horizon, the metric fluctuation must be taken into account, not only due to energy conservation but also to spacetime Planck scale effect. Our results show that the emission rate is related to changes of the black hole’s quantum corrected entropies before and after the emission. In the same time, for the modified black holes, a series of correction terms including a logarithmic term to Bekenstein–Hawking entropy are obtained. Correspondingly, the spectrum of Planck scale corrected emission is obtained and it deviates from the thermal spectrum. In addition, a specific form of modified dispersion relation is proposed and applied.

Keywords

Hawking radiation Black hole entropy Gravity’s rainbow Modified dispersion relations 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. 1.
    Hawking, S.W.: Nature (London) 248, 30 (1974)CrossRefADSGoogle Scholar
  2. 2.
    Hawking, S.W.: Commun. Math. Phys. 43, 199 (1975)CrossRefMathSciNetADSGoogle Scholar
  3. 3.
    Hawking, S.W.: Phys. Rev. D 14, 2460 (1976)CrossRefMathSciNetADSGoogle Scholar
  4. 4.
    Hawking, S.W.: Phys. Rev. D 72, 084013 (2005)CrossRefMathSciNetADSGoogle Scholar
  5. 5.
    Hartle, J.B., Hawking, S.W.: Phys. Rev. D 13, 2188 (1976)CrossRefADSGoogle Scholar
  6. 6.
    Frolov, V.P., Novikov, I.D.: Black Hole Physics. Kluwer, Dordrecht (1998)zbMATHGoogle Scholar
  7. 7.
    Wald, R.: Quantum Field Theory in Curved Space-time and Black hole Thermodynamics. Chicago Lectures in Physics. The University of Chicago Press, Chicago (1994)Google Scholar
  8. 8.
    Parikh, M.K., Wilczek, F.: Phys. Rev. Lett. 85, 5042 (2000); hep-th/9907001CrossRefMathSciNetADSGoogle Scholar
  9. 9.
    Parikhm, M.K.: Int. J. Mod. Phys. D 13, 2355 (2004); hep-th/0405160CrossRefADSGoogle Scholar
  10. 10.
    Parikh, M.K.: hep-th/0402166Google Scholar
  11. 11.
    Vagenas, E.C.: Phys. Lett. B 559, 65 (2003)zbMATHCrossRefMathSciNetADSGoogle Scholar
  12. 12.
    Zhang, J., Zhao, Z.: Nucl. Phys. B 725, 173 (2005)zbMATHCrossRefMathSciNetADSGoogle Scholar
  13. 13.
    Jiang, Q.Q., Wu, S.Q., Cai, X.: Phys. Rev. D 73, 064003 (2006)CrossRefMathSciNetADSGoogle Scholar
  14. 14.
    Fang, H.Z., Hu, Y.P., Zhao, Z.: Chin. Phys. Lett. 22, 2489 (2005)CrossRefADSGoogle Scholar
  15. 15.
    Zhang, J., Hu, Y., Zhao, Z.: hep-th/0512121Google Scholar
  16. 16.
    Hemming, S., Keski-Vakkuri, E.: Phys. Rev. D 64, 044006 (2001)CrossRefMathSciNetADSGoogle Scholar
  17. 17.
    Medved, A.J.M.: Phys. Rev. D 66, 124009 (2002)CrossRefMathSciNetADSGoogle Scholar
  18. 18.
    Medved, A.J.M., Vagenas, E.C.: Mod. Phys. Lett. A 20, 1723 (2005)zbMATHCrossRefADSGoogle Scholar
  19. 19.
    Arzano, M., Medved, A.J.M., Vagenas, E.C.: J. High Energy Phys., JHEP 09, 037 (2005)CrossRefMathSciNetADSGoogle Scholar
  20. 20.
    Arzano, M.: Mod. Phys. Lett. A 20, 41 (2006)CrossRefMathSciNetADSGoogle Scholar
  21. 21.
    Jacobson, T.: Phys. Rev. D 44, 1731 (1991)CrossRefMathSciNetADSGoogle Scholar
  22. 22.
    Jacobson, T.: Phys. Rev. D 48, 728 (1993)CrossRefMathSciNetADSGoogle Scholar
  23. 23.
    Magueijo, J., Smolin, L.: Class. Quant. Grav. 21, 1725 (2004); arXiv:gr-qc/0305055zbMATHCrossRefMathSciNetADSGoogle Scholar
  24. 24.
    Gross, D.J., Mende, P.F.: Nucl. Phys. B 303, 407 (1998)CrossRefMathSciNetADSGoogle Scholar
  25. 25.
    Veneziano, G.: Europhys. Lett. 2, 199 (1986)CrossRefADSGoogle Scholar
  26. 26.
    Garay, L.J.: Int. J. Mod. Phys. A 10, 145 (1995); arXiv:gr-qc/9403008CrossRefADSGoogle Scholar
  27. 27.
    Magueijo, J.: Phys. Lett. B 304, 65 (1995); arXiv:hep-th/9301067Google Scholar
  28. 28.
    Magueijo, J., Smolin, L.: Phys. Rev. Lett. 88, 190403 (2002); arXiv:hep-th/0112090CrossRefADSGoogle Scholar
  29. 29.
    Amelino-Camelia, G.: Int. J. Mod. Phys. D 11, 35 (2002); arXiv:gr-qc/0012051zbMATHCrossRefMathSciNetADSGoogle Scholar
  30. 30.
    Magueijo, J., Smolin, L.: Phys. Rev. D 67, 044017 (2003); arXiv:gr-qc/0207085CrossRefMathSciNetADSGoogle Scholar
  31. 31.
    Amelino-Camelia, G.: Phys. Lett. B 510 255 (2001); arXiv:hep-ph/0012238Google Scholar
  32. 32.
    Sudarsky, D., Urrutia, L., Vucetich, H.: Phys. Rev. Lett. 89, 231301 (2002)CrossRefADSGoogle Scholar
  33. 33.
    Kowalski-Glikman, J.: Phys. Lett. A 285, 391 (2001); arXiv:hep-ph/0102098CrossRefMathSciNetADSGoogle Scholar
  34. 34.
    Alfaro, J., Morales-Tecotl, H.A., Urrutia, L.F.: Phys. Rev. D. 65, 103509 (2002)CrossRefMathSciNetADSGoogle Scholar
  35. 35.
    Amelino-Camelia, G., Ellis, J.R., Mavromatos, N.E. et al.: Nature 393, 763 (1998)CrossRefADSGoogle Scholar
  36. 36.
    Anisimov, A., Banks, T., Dine, M., Graesser, M.: Phys. Rev. D. 65, 085032 (2002)CrossRefMathSciNetADSGoogle Scholar
  37. 37.
    Heuson, C.: arXiv:gr-qc/0606124Google Scholar
  38. 38.
    Jacobson, T., Liberati, S., Mattingly, D.: Phys. Rev. D(R) 66, 081302 (2002); arXiv:hep-ph/0112207CrossRefADSGoogle Scholar
  39. 39.
    Smolin, L.: arXiv:hep-th/0209079Google Scholar
  40. 40.
    Sahlmann, H., Thiemann, T.: arXiv:gr-qc/0207031Google Scholar
  41. 41.
    Kimberly, D., Magueijo, J., Medeiros, J.: Phys. Rev. D 70, 084007 (2004); arXiv:gr-qc/0303067CrossRefMathSciNetADSGoogle Scholar
  42. 42.
    Galan, P., Mena Marugan, G.A.: Phys. Rev.D 70, 124003 (2004)CrossRefMathSciNetADSGoogle Scholar
  43. 43.
    Galan, P., Mena Marugan, G.A.: Phys. Rev.D 72, 044019 (2005)CrossRefMathSciNetADSGoogle Scholar
  44. 44.
    Mignemi, S.: Phys. Rev.D 68, 065029 (2003)CrossRefMathSciNetADSGoogle Scholar
  45. 45.
    Hinterleitner, F.: Phys. Rev.D 71, 025016 (2005)CrossRefMathSciNetADSGoogle Scholar
  46. 46.
    Ling, Y., Li, X., Hu, B.: arXiv:gr-qc/0512084Google Scholar
  47. 47.
    Hackett, J.: Class. Quant. Grav 23, 3833 (2006)zbMATHCrossRefMathSciNetADSGoogle Scholar
  48. 48.
    Amelino-Camelia, G., Arzano, M., Procaccini, A.: Phys. Rev. D 70, 107501 (2004); arXiv:gr-qc/ 0405084CrossRefMathSciNetADSGoogle Scholar
  49. 49.
    Ling, Y., Hu, B., Li, X.: Phys. Rev. D 73, 087702 (2006); arXiv:gr-qc/0512083CrossRefADSGoogle Scholar
  50. 50.
    Painleve, P.: Compt. Rend. Acad. Sci. Paris 173, 677 (1921)Google Scholar
  51. 51.
    Kraus, P., Wilczek, F.: Nucl. Phys. B 433, 403 (1995); gr-qc/9408003CrossRefADSGoogle Scholar
  52. 52.
    Adler, R.J., Chen, P., Santiago, D.I.: Gen. Rel. Grav. 33, 2101 (2001); arXiv:gr-qc/016080zbMATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    Chen, P., Adler, R.J.: Nucl. Phys. Proc. Suppl. 124, 103 (2003); arXiv:gr-qc/0205106zbMATHCrossRefADSGoogle Scholar
  54. 54.
    Don, N.: Page, New. J. Phys. 7, 203 (2005); hep-th/0409024Google Scholar

Copyright information

© The Author(s) 2008

Open AccessThis is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Institute of Theoretical PhysicsBinzhou UniversityBinzhou, ShandongChina
  2. 2.Department of PhysicsBeijing Normal UniversityBeijingChina

Personalised recommendations