General Relativity and Gravitation

, Volume 40, Issue 6, pp 1179–1192 | Cite as

An analytic perturbation approach for classical spinning particle dynamics

Research Article

Abstract

A perturbation method to analytically describe the dynamics of a classical spinning particle, based on the Mathisson–Papapetrou–Dixon (MPD) equations of motion, is presented. By a power series expansion with respect to the particle’s spin magnitude, it is shown how to obtain in general form an analytic representation of the particle’s kinematic and dynamical degrees of freedom that is formally applicable to infinite order in the expansion. Within this formalism, it is possible to identify a classical analogue of radiative corrections to the particle’s mass and spin due to spin–gravity interaction. The robustness of this approach is demonstrated by showing how to explicitly compute the first-order momentum and spin tensor components for arbitrary particle motion in a general space–time background. Potentially interesting applications based on this perturbation approach are outlined.

Keywords

Classical spinning particles Spin–gravity interaction Perturbation approach 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Mathisson M. (1937). Acta Phys Pol. 6: 167 Google Scholar
  3. 3.
    Papapetrou A. (1951). Proc R. Soc. London 209: 248 ADSMathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Tulczyjew W. (1959). Acta Phys. Pol. 18: 393 MathSciNetMATHGoogle Scholar
  5. 5.
    Dixon W.G. (1964). Nuovo Cim. 34: 317 CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Madore J. (1969). Ann. Inst. Henri Poincaré 11: 221 MathSciNetGoogle Scholar
  7. 7.
    Dixon W.G. (1974). Philos. Trans. R. Soc. London, Ser. A 277: 59 CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Dixon W.G. (1979). Isolated Gravitating Systems in General Relativity, vol. 156. North-Holland, Amsterdam Google Scholar
  9. 9.
    Ehlers J. and Rudolph E. (1977). Gen. Rel. Grav. 8: 197 CrossRefADSMathSciNetMATHGoogle Scholar
  10. 10.
    Bailey I. and Israel W. (1980). Ann. Phys. 130: 188 CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Noonan T.W. (1985). Astrophys. J. 291: 422 CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Mashhoon B. (1971). J. Math. Phys. 12: 1075 CrossRefADSGoogle Scholar
  13. 13.
    Wald R. (1972). Phys. Rev. D 6: 406 CrossRefADSGoogle Scholar
  14. 14.
    Tod K.P., de Felice F. and Calvani M. (1976). Nuovo Cim. B 34: 365 CrossRefADSGoogle Scholar
  15. 15.
    Semerák O. (1999). Mon. Not. R. Astron. Soc. 308: 863 CrossRefADSGoogle Scholar
  16. 16.
    Mohseni M., Tucker R.W. and Wang C. (2001). Class. Quant. Grav. 18: 3007 CrossRefADSMathSciNetMATHGoogle Scholar
  17. 17.
    Kessari S., Singh D., Tucker R.W. and Wang C. (2002). Class. Quant. Grav. 19: 4943 CrossRefADSMathSciNetMATHGoogle Scholar
  18. 18.
    Mino Y., Shibata M. and Tanaka T. (1996). Phys. Rev. D 53: 622 CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Tanaka T., Mino Y., Sasaki M. and Shibata M. (1996). Phys. Rev. D 54: 3762 CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Suzuki S. and Maeda K.I. (1998). Phys. Rev. D 58: 023005 CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Suzuki S. and Maeda K.I. (2000). Phys. Rev. D 61: 024005 CrossRefADSGoogle Scholar
  22. 22.
    Hartl M.D. (2003). Phys. Rev. D 67: 024005 CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    Hartl M.D. (2003). Phys. Rev. D 67: 104023 CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    Singh D. (2005). Phys. Rev. D 72: 084033 CrossRefADSMathSciNetGoogle Scholar
  25. 25.
    Chicone C., Mashhoon B. and Punsly B. (2005). Phys. Lett. A 343: 1 CrossRefADSMATHGoogle Scholar
  26. 26.
    Mashhoon B. and Singh D. (2006). Phys. Rev. D 74: 124006 CrossRefADSGoogle Scholar
  27. 27.
    Møller, C.: Commun. Inst. Dublin Adv. Stud., Ser A, p. 5 (1949)Google Scholar
  28. 28.
    Nagle R.K. and Saff E.B. (1989). Fundamentals of Differential Equations, 2nd edn. Benjamin/Cummings, Redwood City, pp 52–53 MATHGoogle Scholar
  29. 29.
    Singh, D.: work in progress.Google Scholar
  30. 30.
    Singh, D.: work in progress.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of ReginaReginaCanada

Personalised recommendations