General Relativity and Gravitation

, Volume 40, Issue 8, pp 1731–1743

Study of Lorentz violation in INTEGRAL gamma-ray bursts

Research Article

Abstract

We search for possible time lags caused by quantum gravitational effects using gamma-ray bursts (GRBs) detected by INTEGRAL. The advantage of this satellite is that we have at our disposal the energy and arrival time of every detected single photon, which enhances the precision of the time resolution. We present a new method for seeking time lags in unbinned data using a maximum likelihood method and support our conclusions with Monte Carlo simulations. The analysis establishes a conservative lower bound on the Lorentz invariance violation scale, which is several orders of magnitude below the Planck mass, whose value may however increase if better statistics of GRBs were available. Furthermore, we disagree with previous studies in which a non-monotonic function of the redshift was used to perform a linear fit.

Keywords

Lorentz violation Quantum gravity Gamma-ray bursts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amelino-Camelia, G.: Phys. Lett. B 392, 283 (1997, preprint) gr-qc/9611016Google Scholar
  2. 2.
    Amelino-Camelia G., Ellis G., Mavromatos N.E., Nanopoulos D.V. and Sarkar S (1998). Nature 393: 763 CrossRefADSGoogle Scholar
  3. 3.
    Kahniashvili T., Godoberidze G. and Ratra B. (2006). Phys. Lett. B 643: 81 CrossRefADSGoogle Scholar
  4. 4.
    Jacobson T., Liberati S. and Mattingly D. (2003). Nature 424: 1019 CrossRefADSGoogle Scholar
  5. 5.
    Ellis J., Mavromatos N.E. and Nanopoulos D.V. (1992). Phys. Lett. B 293: 37 CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Ellis, J., Mavromatos, N.E., Nanopoulos, D.V.: (preprint, 1999) gr-qc/9909085Google Scholar
  7. 7.
    Kostelecky V.A. and Samuel S. (1989). Phys. Rev. D 39: 683 CrossRefADSGoogle Scholar
  8. 8.
    Myers R.C. and Pospelov M. (2003). Phys. Rev. Lett. 90: 211601 CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Ashtekar A. and Lewandowski J. (2004). Class. Quant. Grav. 21: R53 MATHCrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Bojowald, M.: (2005, preprint) gr-qc/0601085Google Scholar
  11. 11.
    Rovelli C. (2004). Quantum Gravity. Cambridge University Press, Cambrigde MATHGoogle Scholar
  12. 12.
    Smolin, L.: (preprint, 2004) hep-th/0408048Google Scholar
  13. 13.
    Thiemann, T.: (preprint, 2001) gr-qc/0110034Google Scholar
  14. 14.
    Amelino-Camelia G., Smolin L. and Starodubtsev A. (2004). Class. Quant. Grav. 21: 3095 MATHCrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Freidel L., Kowalski-Glikman J. and Smolin L. (2004). Phys. Rev. D 69: 044001 CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Smolin, L.: (preprint, 2002) hep-th/0209079Google Scholar
  17. 17.
    Amelino-Camelia G. (2002). Int. J. Mod. Phys. D 11: 35 MATHCrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Amelino-Camelia G. (2003). Int. J. Mod. Phys. D 12: 1633 CrossRefADSGoogle Scholar
  19. 19.
    Lukierski J., Ruegg H., Nowicki A. and Tolstoy V.N. (1991). Phys. Lett. B 264: 331 CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Majid S. (1991). Lett. Math. Phys. 22: 167 MATHCrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Majid S. (1993). J. Math. Phys. 34: 2045 MATHCrossRefADSMathSciNetGoogle Scholar
  22. 22.
    Judes S. and Visser M. (2003). Phys. Rev. D 68: 045001 CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    Kowalski-Glikman, J., Nowak, S.: (preprint, 2002) het-th/0203040Google Scholar
  24. 24.
    Kowalski-Glikman J. (2005). Lecture Notes in Physics. Springer, Berlin Google Scholar
  25. 25.
    Bruno N.R., Amelino-Camelia G. and Kowalski-Glikman J. (2001). Phys. Lett. B 522: 133 MATHCrossRefADSGoogle Scholar
  26. 26.
    Magueijo J. and Smolin L. (2002). Phys. Rev. Lett. 88: 190403 CrossRefADSGoogle Scholar
  27. 27.
    Magueijo J. and Smolin L. (2002). Phys. Rev. D 67: 044017 CrossRefADSMathSciNetGoogle Scholar
  28. 28.
    Smolin L. (2006). Nucl. Phys. B 742: 142 MATHCrossRefADSMathSciNetGoogle Scholar
  29. 29.
    Gambini R. and Pullin J. (1999). Phys. Rev. D 59: 124021 CrossRefADSMathSciNetGoogle Scholar
  30. 30.
    Girelli, F., Livine, E.R.: (preprint, 2004) gr-qc/0412079Google Scholar
  31. 31.
    Girelli F. and Livine E.R. (2004). Braz. J. Phys. 35: 432 Google Scholar
  32. 32.
    Hossenfelder S. (2007). Phys. Rev. D 10: 105005 CrossRefADSMathSciNetGoogle Scholar
  33. 33.
    Scargle, J.D., Norris, J.P., Bonnell, J.T.: (preprint, 2006) astro-ph/0610571Google Scholar
  34. 34.
    Ellis J., Mavromatos N.E., Nanopoulos D.V. and Sakharov A.S. (2003). A A 402: 409 MATHGoogle Scholar
  35. 35.
    Ellis J., Mavromatos N.E., Nanopoulos D.V., Sakharov A.S. and Sarkisyan E.K.G. (2006). Astropart. Phys. 25: 402 CrossRefADSGoogle Scholar
  36. 36.
    Bolmont, J., Jacholkowska, A., Atteia, J., Piron, F., Pizzichini, G.: (preprint, 2006) astro-ph/0603725Google Scholar
  37. 37.
    Watson D., Reeves J.N., Hjorth J., Jakobsson P. and Pedersen K. (2003). ApJL 595: L29 CrossRefADSGoogle Scholar
  38. 38.
    Watson D., et al (2004). ApJL 605: L101 CrossRefADSGoogle Scholar
  39. 39.
    Moran L., et al (2005). A A 432: 467 Google Scholar
  40. 40.
    McGlynn S., et al (2005). Nuovo Cimento C 28: 481 ADSGoogle Scholar
  41. 41.
    D’Avanzo, P., et al.: (preprint, 2006) astro-ph/0612644Google Scholar
  42. 42.
    Luca A.,(2005). A A 440: 85 Google Scholar
  43. 43.
    Fatkhullin, T.A., Sokolov, V.V., Castro-Tirado, A.J., Komarova, V.N., Lebedev, V.S.: (2005). http://www.ioffe.ru/astro/NS2005/ABSTRACTS/fatkhullin.ps
  44. 44.
    Prochaska J.X., Chen H.-W., Bloom J.S. and Stephens A. (2005). GRB Coord. Netw. 3679: 1 ADSGoogle Scholar
  45. 45.
    Prochaska J.X., Ellison S., Foley R.J., Bloom J.S. and Chen H.-W. (2005). GRB Coord. Netw. 3332: 1 ADSGoogle Scholar
  46. 46.
    Jakobsson, P., et al.: GRB Coord. Netw. 4015 (2005)Google Scholar
  47. 47.
    Pelangeon A. and Atteia J.-L. (2006). GRB Coord. Netw. 4704: 1 ADSGoogle Scholar
  48. 48.
    Rodriguez Martinez M., Piran T. and Oren Y. (2006). JCAP 5: 17 ADSGoogle Scholar
  49. 49.
    Boggs S.E., Wunderer C.B., Hurley K. and Coburn W. (2004). ApJ 611: L77 CrossRefADSGoogle Scholar
  50. 50.
    Winkler C., et al (2003). A A 411: L1 Google Scholar
  51. 51.
    Lebrun, F., et al.: A A 411, L141Google Scholar
  52. 52.
    Band D., et al (1993). Apj 413: 281 CrossRefADSGoogle Scholar
  53. 53.
    Yao W.-M., et al (2006). J. Phys. G: Nucl. Part. Phys. 33: 1 CrossRefADSGoogle Scholar
  54. 54.
    Fenimore, E.E., in ’t Zand, J.J.M., Norris, J.P., Bonnell, J.T., Nemiroff, R.J.: ApJL 448 L101 (1995)Google Scholar
  55. 55.
    Norris J.P., et al (1996). ApJ 459: 393 CrossRefADSGoogle Scholar
  56. 56.
    Norris J.P., Marani G.F. and Bonnell J.T. (2000). ApJ 534: 248 CrossRefADSGoogle Scholar
  57. 57.
    Rodriguez Martinez M. and Piran T. (2006). JCAP 4: 6 ADSGoogle Scholar
  58. 58.
    Piran T. (2004). Rev. Mod. Phys. 76: 1143 CrossRefADSGoogle Scholar
  59. 59.
    Jacob, U., Piran, T.: (preprint 2007) 0712.2170Google Scholar
  60. 60.
    Ellis, J., Mavromatos, N.E., Nanopoulos, D.V., Sakharov, A.S., Sarkisyan, E.K.G.: (preprint 2007) 0712.2781Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikUniversität UlmUlmGermany
  2. 2.INTEGRAL Science Data CenterVersoixSwitzerland

Personalised recommendations