General Relativity and Gravitation

, Volume 40, Issue 8, pp 1745–1769 | Cite as

A modification of Einstein–Schrödinger theory that contains both general relativity and electrodynamics

  • J. A. ShifflettEmail author
Research Article


We modify the Einstein–Schrödinger theory to include a cosmological constant Λ z which multiplies the symmetric metric, and we show how the theory can be easily coupled to additional fields. The cosmological constant Λ z is assumed to be nearly cancelled by Schrödinger’s cosmological constant Λ b which multiplies the nonsymmetric fundamental tensor, such that the total ΛΛ z Λ b matches measurement. The resulting theory becomes exactly Einstein–Maxwell theory in the limit as |Λ z | → ∞. For |Λ z | ~ 1/(Planck length)2 the field equations match the ordinary Einstein and Maxwell equations except for extra terms which are < 10−16 of the usual terms for worst-case field strengths and rates-of-change accessible to measurement. Additional fields can be included in the Lagrangian, and these fields may couple to the symmetric metric and the electromagnetic vector potential, just as in Einstein–Maxwell theory. The ordinary Lorentz force equation is obtained by taking the divergence of the Einstein equations when sources are included. The Einstein–Infeld–Hoffmann (EIH) equations of motion match the equations of motion for Einstein–Maxwell theory to Newtonian/Coulombian order, which proves the existence of a Lorentz force without requiring sources. This fixes a problem of the original Einstein–Schrödinger theory, which failed to predict a Lorentz force. An exact charged solution matches the Reissner–Nordström solution except for additional terms which are ~10−66 of the usual terms for worst-case radii accessible to measurement. An exact electromagnetic plane-wave solution is identical to its counterpart in Einstein–Maxwell theory.


Einstein–Schrodinger theory Einstein–Straus theory Cosmological constant 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Einstein A. and Straus E.G. (1946). Ann. Math. 47: 731 CrossRefMathSciNetGoogle Scholar
  2. Einstein A. (1948). Rev. Mod. Phys. 20: 35 CrossRefADSMathSciNetGoogle Scholar
  3. Einstein A. (1949). Can. J. Math. 2: 120 MathSciNetGoogle Scholar
  4. Einstein A. and Kaufman B. (1955). Ann. Math. 62: 128 CrossRefMathSciNetGoogle Scholar
  5. Einstein A. (1956). The Meaning of Relativity, 5th edn revised. Princeton University Press, Princeton Google Scholar
  6. Schrödinger E. (1947). Proc. R. Ir. Acad. 51A: 163 Google Scholar
  7. Schrödinger E. (1948). Proc. R. Ir. Acad. 52A: 1 Google Scholar
  8. Schrödinger, E.: Space–Time Structure, pp. 93, 108, 112. Cambridge Press, London (1950)Google Scholar
  9. Callaway J. (1953). Phys. Rev. 92: 1567 zbMATHCrossRefADSMathSciNetGoogle Scholar
  10. Infeld L. (1950). Acta Phys. Pol. X: 284 MathSciNetGoogle Scholar
  11. Einstein A. and Infeld L. (1949). Can. J. Math. 1: 209 zbMATHMathSciNetGoogle Scholar
  12. Wallace P.R. (1941). Am. J. Math. 63: 729 zbMATHCrossRefMathSciNetGoogle Scholar
  13. Kurşunoğlu B. (1952). Phys. Rev. 88: 1369 zbMATHCrossRefADSGoogle Scholar
  14. Zeldovich Ya.B. (1968). Sov. Phys. Uspekhi 11: 381 CrossRefADSGoogle Scholar
  15. Sahni, V., Starobinsky, A.: Int. J. Mod. Phys. D9, 373 (2000) [arXiv:astro-ph/9904398]Google Scholar
  16. Peskin, M.E., Schroeder, D.V.: An Introduction to Quantum Field Theory, pp. 790–791. Westview Press, Boulder (1995)Google Scholar
  17. Carroll, S.M., Press, W.H., Turner, E.L.: Annu. Rev. Astron. Astrophys. 30, 499 (1992)Google Scholar
  18. Borchsenius K. (1976). Phys. Rev. D 13: 2707 CrossRefADSMathSciNetGoogle Scholar
  19. Borchsenius K. (1978). Nuovo Cim. 46A: 403 CrossRefADSMathSciNetGoogle Scholar
  20. Astier, P., Astro. Astrophys. (2005) [arXiv:astro-ph/0510447]Google Scholar
  21. Shifflett, J.A.: (unpublished) [arXiv:gr-qc/0411016]Google Scholar
  22. Birrell N.D. and Davies P.C. (1982). Quantum Fields in Curved Space. Cambridge University Press, Cambridge, 81–88 zbMATHGoogle Scholar
  23. Tonnelat M.A. (1954). C. R. Acad. Sci. 239: 231 zbMATHMathSciNetGoogle Scholar
  24. Shifflett, J.A.: (unpublished) [arXiv:gr-qc/0403052]Google Scholar
  25. Antoci, S.: Gen. Rel. Grav. 23, 47 (1991) [arXiv:gr-qc/0108052]Google Scholar
  26. Proca A. (1936). J. Phys. Radium 7: 347 zbMATHCrossRefGoogle Scholar
  27. Jackson, J.D.: Classical Electrodynamics, 3rd edn. p. 596, 600. Wiley, London (1999)Google Scholar
  28. Persides S. and Ioannides I. (1977). Prog. Theor. Phys. 58: 829 zbMATHCrossRefADSMathSciNetGoogle Scholar
  29. Persides S. (1970). Prog. Theor. Phys. 320: 349 zbMATHMathSciNetGoogle Scholar
  30. Sakharov A.D. (1968). Sov. Phys. Dokl. 12: 1040 ADSGoogle Scholar
  31. Garay L.L. (1995). Int. J. Mod. Phys. A10: 145 ADSGoogle Scholar
  32. Padmanabhan T. (1985). Gen. Rel. Grav. 17: 215 CrossRefADSMathSciNetGoogle Scholar
  33. Padmanabhan T. (2002). Class Quantum Grav. 19: 3551 zbMATHCrossRefADSMathSciNetGoogle Scholar
  34. Smolin L. (2004). Sci. Am. 290: 1 MathSciNetCrossRefGoogle Scholar
  35. Einstein A., Infeld L. and Hoffmann B. (1937). Ann. Math. 39: 65 MathSciNetCrossRefGoogle Scholar
  36. Wallace, P.R.: On the Relativistic equations of motion in electromagnetic theory. Doctoral Thesis, University of Toronto (1940)Google Scholar
  37. Gorbatenko M.V. (2005). Theor. Math. Phys. 142: 138 CrossRefMathSciNetGoogle Scholar
  38. Reissner H. (1916). Ann. Phys. (Leipzig) 50: 106 ADSGoogle Scholar
  39. Nordström A. (1918). Proc. Kon. Ned. Akad. Wet. 20: 1238 ADSGoogle Scholar
  40. Shifflett, J.A.: (unpublished) [arXiv:gr-qc/0310124]Google Scholar
  41. Papapetrou A. (1948). Proc. R. Ir. Acad. 52: 69 MathSciNetGoogle Scholar
  42. Takeno H., Ikeda M. and Abe S. (1951). Prog. Theor. Phys. VI: 837 CrossRefADSMathSciNetGoogle Scholar
  43. Chandrasekhar, S.: The Mathematical Theory of Black Holes, p. 317. Oxford University Press, New York (1992)Google Scholar
  44. Baldwin O.R and Jeffery G.B (1926). Proc. R. Soc. A 111: 95 CrossRefADSGoogle Scholar
  45. Misner, C.W., Thorne, S., Wheeler, J.A.: Gravitation, pp. 961–962. W. H. Freeman and Company, San Francisco (1973)Google Scholar
  46. Stephani, H., Kramer, D., MacCallum, M.A.H., Hoenselaers, C., Herlt, E.: Exact Solutions to Einstein’s Field Equations, 2nd edn, p. 385. Cambridge University Press, Cambridge (2003)Google Scholar
  47. Griffiths, J.B.: Colliding Plane Waves in General Relativity, pp. 18–21, 137–145. Oxford University Press, Oxford (1991)Google Scholar
  48. Deif, A.S.: Advanced Matrix Theory For Scientists and Engineers, p. 20, 153, 183, 171. Wiley, New York (1982)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of PhysicsWashington UniversitySt LouisUSA

Personalised recommendations