General Relativity and Gravitation

, Volume 40, Issue 7, pp 1533–1554

Limitations to testing the equivalence principle with satellite laser ranging

  • A. M. Nobili
  • G. L. Comandi
  • D. Bramanti
  • Suresh Doravari
  • D. M. Lucchesi
  • F. Maccarrone
Research Article

Abstract

We consider the possibility of testing the equivalence principle (EP) in the gravitational field of the Earth from the orbits of LAGEOS and LAGEOS II satellites, which are very accurately tracked from ground by laser ranging. The orbital elements that are affected by an EP violation and can be used to measure the corresponding dimensionless parameter η are semimajor axis and argument of pericenter. We show that the best result is obtained from the semimajor axis, and it is limited—with all available ranging data to LAGEOS and LAGEOS II—to η ≃ 2 × 10−9, more than 3 orders of magnitude worse than experimental results provided by torsion balances. The experiment is limited because of the non uniformity of the gravitational field of the Earth and the error in the measurement of semimajor axis, precisely in the same way as they limit the measurement of the product GM of the Earth. A better use of the pericenter of LAGEOS II can be made if the data are analyzed searching for a new Yukawa-like interaction with a distance scale of one Earth radius. It is found that the pericenter of LAGEOS II is 3 orders of magnitude more sensitive to a composition dependent new interaction with this particular scale than it is to a composition dependent effect expressed by the η parameter only. Nevertheless, the result is still a factor 500 worse than EP tests with torsion balances in the gravitational field of the Earth (i.e. at comparable distance), though a detailed data analysis has yet to be performed. While EP tests with satellite laser ranging are not competitive, laser ranging to the Moon has been able to provide a test of the EP almost 1 order of magnitude better than torsion balances. We show that this is due to the much greater distance of the test masses (the Earth and the Moon) from the primary body (the Sun) and the correspondingly smaller gradients of its gravity field. We therefore consider a similar new experiment involving the orbit of LAGEOS: testing LAGEOS and the Earth for an EP violation in the gravitational field of the Sun. We show that this test may be of interest, though it is a factor 300 less sensitive than in the case of the Moon due to the fact that LAGEOS is closer to the Earth than the Moon and consequently its orbit is less affected by the Sun. The limitations we have pointed out for laser ranging can be overcome by flying in low Earth orbit a spacecraft carrying concentric test masses of different composition with the capability, already demonstrated in ground laboratories, to accurately sense in situ any differential effects between them.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Su Y., Heckel B.R., Adelberger E.G., Gundlach J.H., Harris M., Smith G.L. and Swanson H.E. (1994). Phys. Rev. D 50: 3614 CrossRefADSGoogle Scholar
  2. 2.
    Baebler S., Heckel B.R., Adelberger E.G., Gundlach J.H., Schimidt U. and Swanson H.E. (1999). Phys. Rev. Lett. 83: 3585 CrossRefADSGoogle Scholar
  3. 3.
    Blaser J.P. (2001). Class. Quantum Grav. 18: 2509 MATHCrossRefADSGoogle Scholar
  4. 4.
    Comandi G.L., Nobili A.M., Toncelli R. and Chiofalo M.L. (2003). Phys. Lett. A 318: 251 CrossRefADSGoogle Scholar
  5. 5.
    Iorio L. (2004). Gen. Rel. Grav. 36: 361 MATHCrossRefADSGoogle Scholar
  6. 6.
    Nobili, A.M., Bramanti, D., Comandi, G.L., Toncelli, R., Polacco, E., Chiofalo, M.L.: Phys. Lett. A 318, 172 (2003); “Galileo Galilei” (GG) Phase A Report, ASI, November 1998, 2nd edn (2000). Website http://eotvos.dm.unipi.it/nobili
  7. 7.
    Blaser, J.P., Cornelisse, J., Cruise, M., Damour, T., Hechler, F., Hechler, M., Jafry, Y., Kent, B., Lockerbie, N.A., Paik, H.J., Ravex, A., Reinhard, R., Rummel, R., Speake, C., Summer, T., Touboul, P., Vitale, S.: STEP: Satellite Test of the Equivalence Principle, Report on the Phase A Study, ESA SCI (96)5 (1996). The STEP Website http://einstein.stanford.edu/STEP/step2.html
  8. 8.
  9. 9.
    Iafolla V., Nozzoli S., Lorenzini E.C. and Milyukov V. (1998). Rev. Sci. Instrum. 69: 4146 CrossRefADSGoogle Scholar
  10. 10.
    “International Earth Rotation and Reference System Services (IERS)”, IERS Conventions, 2003- IERS Technical Note no. 32 (2003)Google Scholar
  11. 11.
  12. 12.
    Reigber, Ch., Schimdt, R., Flechtner, F., König, R., Meyer, U., Neumayer, K.H., Schwintzer, P., Zhu, S.Y.: An Earth gravity field model complete to degree and order 150 from GRACE: EIGEN-GRACE02S, J. Geodyn. 39, 1 (2005)Google Scholar
  13. 13.
    Iorio, L.: In: Reimer, A. (ed.) Quantum Gravity Research Trends, 250, p. 273 (2006)Google Scholar
  14. 14.
    Fischbach E., Sudarsky D., Szafer A., Talmadge C. and Aronson S.H. (1986). Phys. Rev. Lett. 56: 3–6 CrossRefADSGoogle Scholar
  15. 15.
    Nordtvedt K. (2000). Phys. Rev. D 61: 122001 CrossRefADSGoogle Scholar
  16. 16.
    Lucchesi D.M. (2003). Phys. Lett. A 318: 234 CrossRefADSGoogle Scholar
  17. 17.
    Milani A., Nobili A.M. and Farinella P. (1987). “Non-gravitational perturbations and satellite geodesy”. Adam Hilger, Bristol Google Scholar
  18. 18.
    Kovalevsky, J.: “Introduction à la mécanique céleste”, Librairie Armand Colin, Paris (1963)Google Scholar
  19. 19.
    Williams J.G., Turyshev S.G. and Boggs D.H. (2004). Phys. Rev. Lett. 93: 261101 CrossRefADSGoogle Scholar
  20. 20.
    Nordtvedt K. (1968). Phys. Rev. 170: 1186 CrossRefADSGoogle Scholar
  21. 21.
    Nordtvedt K. (1973). Phys. Rev. D 7: 2347 CrossRefADSGoogle Scholar
  22. 22.
    Nordtvedt K. (1995). Icarus 114: 51 CrossRefADSGoogle Scholar
  23. 23.
    Damour T. and Vokrouhlický D. (1996). Phys. Rev. D 53: 4177 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • A. M. Nobili
    • 1
    • 2
  • G. L. Comandi
    • 2
    • 3
  • D. Bramanti
    • 2
  • Suresh Doravari
    • 1
    • 2
  • D. M. Lucchesi
    • 2
    • 4
  • F. Maccarrone
    • 1
    • 2
  1. 1.Department of Physics “E. Fermi”University of PisaPisaItaly
  2. 2.INFN-Istituto Nazionale di Fisica Nucleare, Sezione di PisaPisaItaly
  3. 3.Department of PhysicsUniversity of BolognaBolognaItaly
  4. 4.INAF-Istituto Nazionale di Astrofisica, IFSIRomeItaly

Personalised recommendations