General Relativity and Gravitation

, Volume 40, Issue 2–3, pp 467–527 | Cite as

Dark Energy from structure: a status report

Research Article

Abstract

The effective evolution of an inhomogeneous universe model in any theory of gravitation may be described in terms of spatially averaged variables. In Einstein’s theory, restricting attention to scalar variables, this evolution can be modeled by solutions of a set of Friedmann equations for an effective volume scale factor, with matter and backreaction source terms. The latter can be represented by an effective scalar field (“morphon field”) modeling Dark Energy. The present work provides an overview over the Dark Energy debate in connection with the impact of inhomogeneities, and formulates strategies for a comprehensive quantitative evaluation of backreaction effects both in theoretical and observational cosmology. We recall the basic steps of a description of backreaction effects in relativistic cosmology that lead to refurnishing the standard cosmological equations, but also lay down a number of challenges and unresolved issues in connection with their observational interpretation. The present status of this subject is intermediate: we have a good qualitative understanding of backreaction effects pointing to a global instability of the standard model of cosmology; exact solutions and perturbative results modeling this instability lie in the right sector to explain Dark Energy from inhomogeneities. It is fair to say that, even if backreaction effects turn out to be less important than anticipated by some researchers, the concordance high-precision cosmology, the architecture of current N-body simulations, as well as standard perturbative approaches may all fall short in correctly describing the Late Universe.

Keywords

Relativistic Cosmology Inhomogeneous Universe Models Backreaction Observational Cosmology Dark Energy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alam, U., Sahni, V., Saini, T.D., Starobinskii, A.A.: Exploring the expanding Universe and Dark Energy using the statefinder diagnostic. Mon. Not. Roy. Astro. Soc. 344, 1057 (2003)ADSGoogle Scholar
  2. 2.
    Alnes, H., Amarzguioui, M.: Supernova Hubble diagram for off-center observers in a spherically symmetric inhomogeneous universe. Phys. Rev. D 75, 023506 (2007)ADSGoogle Scholar
  3. 3.
    Alnes, H., Amarzguioui, M., Grøn, Ø.: An inhomogeneous alternative to Dark Energy?. Phys. Rev. D 73, 083519 (2006)ADSGoogle Scholar
  4. 4.
    Alnes, H., Amarzguioui, M., Grøn, Ø.: Can a dust dominated Universe have accelerated expansion?. JCAP 0701, 007 (2007)ADSGoogle Scholar
  5. 5.
    Anderson, M.T.: Scalar curvature and geometrization conjectures for 3-manifolds. Comparison Geometry (Berkeley, 1993–94), pp. 49–82, Math. Sci. Res. Inst. Publ., vol. 30, Cambridge University Press, Cambridge (1997)Google Scholar
  6. 6.
    Arbey, A.: Dark fluid: A complex scalar field to unify Dark Energy and Dark Matter. Phys. Rev. D. 74, 043516 (2006)ADSGoogle Scholar
  7. 7.
    Arnowitt, R., Deser, S., Misner, C.W.: The dynamics of general relativity. In: Witten, L.(eds) Gravitation, pp. 227–265. Wiley, New York (1962)Google Scholar
  8. 8.
    Astier, P. et al.: The Supernova Legacy Survey: measurement of Ωm, ΩΛ and w from the first year data set. Astron. & Astrophys. 447, 31 (2006)ADSGoogle Scholar
  9. 9.
    Aurich, R., Steiner, F.: The cosmic microwave background for a nearly flat compact hyperbolic universe. Mon. Not. Roy. Astro. Soc. 323, 1016 (2001)ADSGoogle Scholar
  10. 10.
    Aurich, R., Steiner, F.: Dark Energy in a hyperbolic universe. Mon. Not. Roy. Astro. Soc. 334, 735 (2002)ADSGoogle Scholar
  11. 11.
    Bahcall, N., Ostriker, J.P., Perlmutter, S., Steinhardt, P.J.: The Cosmic Triangle: revealing the state of the Universe. Science 284, 1481 (1999)ADSGoogle Scholar
  12. 12.
    Barrow, J.D., Tsagas, C.G.: Averaging anisotropic cosmologies. Class. Quant. Grav. 24, 1023 (2007)MATHADSMathSciNetGoogle Scholar
  13. 13.
    Biesiada, M.: Information-theoretic model selection applied to supernovae data. JCAP 0702, 003 (2007)ADSGoogle Scholar
  14. 14.
    Bildhauer, S.: Remarks on possible backreactions of inhomogeneities on expanding universes. Prog. Theor. Phys. 84, 444 (1990)ADSGoogle Scholar
  15. 15.
    Bildhauer, S., Buchert, T., Kasai, M.: Solutions in Newtonian cosmology—the pancake theory with cosmological constant. Astron. Astrophys. 263, 23 (1992)ADSGoogle Scholar
  16. 16.
    Bildhauer, S., Futamase, T.: The Cosmic Microwave Background in a globally inhomogeneous universe. Mon. Not. Roy. Astron. Soc. 249, 126 (1991)ADSGoogle Scholar
  17. 17.
    Biswas, T., Mansouri, R., Notari, A.: Nonlinear structure formation and “apparent” acceleration: an investigation. arXiv:astro-ph/0606703 (2006)Google Scholar
  18. 18.
    Blanchard, A.: Cosmological parameters: where are we?. Astrophys. Space Sci. 290, 135 (2004)ADSGoogle Scholar
  19. 19.
    Blanchard, A., Douspis, M., Rowan-Robinson, M., Sarkar, S.: An alternative to the cosmological “concordance model”. Astron. Astrophys. 412, 35 (2003)MATHADSGoogle Scholar
  20. 20.
    Blumenhagen, R., Kors, B., Lüst, D., Stieberger, S.: Four-dimensional string compactifications with D-branes, orientifolds and fluxes. Phys. Rep. 445, 1 (2007)ADSMathSciNetGoogle Scholar
  21. 21.
    Boersma, J.P.: Averaging in cosmology. Phys. Rev. D 57, 798 (1998)ADSGoogle Scholar
  22. 22.
    Bolejko, K.: Cosmological applications of the Szekeres model. In: Golovin, A., Ivashchenko, G., Simon, A. (eds.) 13th Young Scientists’ Conference on Astronomy and Space Physics. Kyiv University Press, arXiv:astro-ph/0607130 (2006)Google Scholar
  23. 23.
    Bonvin, C., Durrer, R., Gasparini, M.A.: Fluctuations of the luminosity distance. Phys. Rev. D 73, 023523 (2006)ADSGoogle Scholar
  24. 24.
    Brandenberger, R.H., Prokopec, T., Mukhanov, V.F.: The entropy of the gravitational field. Phys. Rev. D 48, 2443 (1993)ADSMathSciNetGoogle Scholar
  25. 25.
    Brouzakis, N., Tetradis, N., Tzavara, E.: The effect of large scale inhomogeneities on the luminosity distance. JCAP 0702, 013 (2007)ADSGoogle Scholar
  26. 26.
    Bruni, M., Dunsby, P.K.S., Ellis, G.F.R.: Cosmological perturbations and the physical meaning of gauge-invariant variables. Astrophys. J. 395, 34 (1992)ADSGoogle Scholar
  27. 27.
    Bruni, M., Ellis, G.F.R., Dunsby, P.K.S.: Gauge-invariant perturbations in a scalar field dominated Universe. Class. Quant. Grav. 9, 921 (1992)MATHADSMathSciNetGoogle Scholar
  28. 28.
    Bruni, M., Matarrese, S., Pantano, O.: Dynamics of silent universes. Astrophys. J. 445, 958 (1995)ADSGoogle Scholar
  29. 29.
    Buchert, T.: A class of solutions in Newtonian cosmology and the pancake theory. Astron. Astrophys. 223, 9 (1989)ADSMathSciNetGoogle Scholar
  30. 30.
    Buchert, T.: Lagrangian theory of gravitational instability of Friedmann-Lemaî tre cosmologies and the ‘Zel’dovich approximation’. Mon. Not. Roy. Astron. Soc. 254, 729 (1992)ADSGoogle Scholar
  31. 31.
    Buchert, T.: Averaging hypotheses in Newtonian Cosmology. In: Coles P., et al. (eds.) Mapping, Measuring and Modelling the Universe, Astron. Soc. of the Pacific 94. pp. 349–356; arXiv:astro-ph/9512107 (1996)Google Scholar
  32. 32.
    Buchert, T.: On average properties of inhomogeneous fluids in general relativity: 1. dust cosmologies. Gen. Rel. Grav. 32, 105 (2000)MATHADSMathSciNetGoogle Scholar
  33. 33.
    Buchert, T.: On average properties of inhomogeneous cosmologies. In: Eriguchi Y., et al. (eds.) 9th JGRG Meeting, Hiroshima 1999. pp. 306–321; arXiv:gr-qc/0001056 (2000)Google Scholar
  34. 34.
    Buchert, T.: On average properties of inhomogeneous fluids in general relativity: 2. perfect fluid cosmologies. Gen. Rel. Grav. 33, 1381 (2001)MATHADSMathSciNetGoogle Scholar
  35. 35.
    Buchert, T.: A cosmic equation of state for the inhomogeneous universe: can a global far-from-equilibrium state explain Dark Energy?. Class. Quant. Grav. 22, L113 (2005)MATHADSMathSciNetGoogle Scholar
  36. 36.
    Buchert, T.: On globally static and stationary cosmologies with or without a cosmological constant and the Dark Energy problem. Class. Quant. Grav. 23, 817 (2006)MATHADSMathSciNetGoogle Scholar
  37. 37.
    Buchert, T.: Backreaction issues in relativistic cosmology and the Dark Energy debate. In: Novello M., et al. (eds.) XII. Brazilian School of Cosmology and Gravitation:Mangaratiba, Rio de Janeiro, Brazil 2006. AIP Conf. Proc., vol. 910, pp. 361–380 (2007)Google Scholar
  38. 38.
    Buchert, T.: Cosmic Continua—a treatise on self-gravitating collisionless systems in cosmology. Cambridge University Press, Cambridge (in preparation) (2007)Google Scholar
  39. 39.
    Buchert, T., Carfora, M.: Regional averaging and scaling in relativistic cosmology. Class. Quant. Grav. 19, 6109 (2002)MATHADSMathSciNetGoogle Scholar
  40. 40.
    Buchert, T., Carfora, M.: Cosmological parameters are ‘dressed’. Phys. Rev. Lett. 90, 031101–14 (2003)ADSGoogle Scholar
  41. 41.
    Buchert, T., Carfora, M.: The cosmic quartet: cosmological parameters of a smoothed inhomogeneous spacetime. In: Shibata M., et al. (eds.) 12th JGRG Meeting, Tokyo 2002, pp. 157–161; arXiv:astro-ph/0312621 (2003)Google Scholar
  42. 42.
    Buchert, T., Carfora, M.: On the curvature of the present-day Universe. (in preparation) (2007)Google Scholar
  43. 43.
    Buchert, T., Domí nguez, A.: Adhesive gravitational clustering. Astron. Astrophys. 438, 443 (2005)MATHADSGoogle Scholar
  44. 44.
    Buchert, T., Ehlers, J.: Averaging inhomogeneous Newtonian Cosmologies. Astron. Astrophys. 320, 1 (1997)ADSGoogle Scholar
  45. 45.
    Buchert, T., Ellis, G.F.R., Maartens, R.: Effective brane world cosmologies and averaging scales. (in preparation) (2007)Google Scholar
  46. 46.
    Koyama, K.: arXiv:0706.1557 [astro-ph] (2007, this volume)Google Scholar
  47. 47.
    Buchert, T., Götz, G.: A class of solutions for self-gravitating dust in Newtonian gravity. J. Math. Phys. 28, 2714 (1987)MATHADSMathSciNetGoogle Scholar
  48. 48.
    Buchert, T., Kerscher, M., Sicka, C.: Backreaction of inhomogeneities on the expansion: the evolution of cosmological parameters. Phys. Rev. D. 62, 043525 (2000)ADSGoogle Scholar
  49. 49.
    Buchert, T., Larena, J., Alimi, J.-M.: Correspondence between kinematical backreaction and scalar field cosmologies—the ’morphon field’. Class. Quant. Grav. 23, 6379 (2006)MATHADSMathSciNetGoogle Scholar
  50. 50.
    Buchert, T., Ostermann, M.: On relativistic generalizations of Zel’dovich’s approximation. (in preparation) (2007)Google Scholar
  51. 51.
    Buchert, T., Rakić, A., Schwarz, D.J.: On the averaging problem in geometric optics and its cosmological consequences. (in preparation) (2007)Google Scholar
  52. 52.
    Caldwell, R.R., Doran, M., Müller, C.M., Schäfer, G., Wetterich, C.: Early quintessence in light of the Wilkinson Microwave Anisotropy Probe. Astrophys. J. 591, L75 (2003)ADSGoogle Scholar
  53. 53.
    Caldwell, R.R., Linder, E.V.: Limits of quintessence. Phys. Rev. Lett. 95, 141301 (2005)ADSGoogle Scholar
  54. 54.
    Capozziello, S., Cardone, V.F., Troisi, A.: Reconciling Dark Energy models with f(R) theories. Phys. Rev. D. 71, 043503 (2005)Google Scholar
  55. 55.
    Capozziello, S., Francaviglia, M.: arXiv:0706.1146 [astro-ph] (2007, this volume)Google Scholar
  56. 56.
    Carfora, M., Buchert, T.: Ricci flow deformation of cosmological initial data sets. (2007, in preparation)Google Scholar
  57. 57.
    Carfora, M., Marzuoli, A.: Model geometries in the space of Riemannian structures and Hamilton’s flow. Class. Quant. Grav. 5, 659 (1988)MATHADSMathSciNetGoogle Scholar
  58. 58.
    Carfora, M., Piotrkowska, K.: Renormalization group approach to relativistic cosmology. Phys. Rev. D 52, 4393 (1995)ADSMathSciNetGoogle Scholar
  59. 59.
    Célérier, M.-N.: Do we really see a cosmological constant in the supernovae data?. Astron. Astrophys. 353, 63 (2000)Google Scholar
  60. 60.
    Célérier, M.-N.: The accelerated expansion of the Universe challenged by an effect of the inhomogeneities. A review. arXiv:astro-ph/0702416 (2007)Google Scholar
  61. 61.
    Chuang, C.-H., Gu, J.-A., Hwang, W.-Y.P.: Inhomogeneity-induced cosmic acceleration in a dust Universe. arXiv:astro-ph/0512651 (2005)Google Scholar
  62. 62.
    Clarkson, C., Cortes, M., Bassett, B.A.: Dynamical Dark Energy or simply cosmic curvature?. JCAP 0708, 011 (2007)ADSGoogle Scholar
  63. 63.
    Colberg, J.M., Sheth, R.K., Diaferio, A., Gao, L., Yoshida, N.: Voids in a ΛCDM universe. Mon. Not. Roy. Astron. Soc. 360, 216 (2005)ADSGoogle Scholar
  64. 64.
    Coley, A.A., Pelavas, N., Zalaletdinov, R.M.: Cosmological solutions in Macroscopic Gravity. Phys. Rev. Lett. 95, 151102 (2005)ADSMathSciNetGoogle Scholar
  65. 65.
    Coley, A.A., Pelavas, N.: Averaging in spherically symmetric cosmology. Phys. Rev. D 75, 043506 (2007)ADSMathSciNetGoogle Scholar
  66. 66.
    Conley, A.J. et al.: Measurement of Ωm, ΩΛ from a blind analysis of Type Ia supernovae with CMAGIC: using color information to verify the acceleration of the Universe. Astrophys. J. 644, 1 (2006)ADSGoogle Scholar
  67. 67.
    Copeland, E.J., Sami, M., Tsujikawa, S.: Dynamics of Dark Energy. Int. J. Mod. Phys. D 15, 1753 (2006)MATHADSMathSciNetGoogle Scholar
  68. 68.
    Cornish, N.J., Spergel, D.N., Starkman, G.D., Komatsu, E.: Constraining the topology of the Universe. Phys. Rev. Lett. 92, 201302 (2004)ADSMathSciNetGoogle Scholar
  69. 69.
    Das, S., Banarjee, N., Dadhich, N.: Curvature-driven acceleration: a utopia or a reality?. Class. Quant. Grav. 23, 4159 (2006)MATHADSGoogle Scholar
  70. 70.
    Dunsby, P.K.S., Bruni, M., Ellis, G.F.R.: Covariant perturbations in a multifluid cosmological medium. Astrophys. J. 395, 54 (1992)ADSGoogle Scholar
  71. 71.
    Ehlers, J., Buchert, T.: Newtonian cosmology in Lagrangian formulation: foundations and perturbation theory. Gen. Rel. Grav. 29, 733 (1997)MATHADSMathSciNetGoogle Scholar
  72. 72.
    Ellis, G.F.R.: Relativistic cosmology—its nature, aims and problems. In: Bertotti, B., de Felice, F., Pascolini, A.(eds) General Relativity and Gravitation, pp. 215–288. D. Reidel Publishing, Dordrecht (1984)Google Scholar
  73. 73.
    Ellis, G.F.R., Börner, G., Buchert, T., Ehlers, J., Hogan, C.J., Kirshner, R.P., Press, W.H., Raffelt, R., Thielemann, F.-K., Vanden Bergh, S.: What do we know about global properties of the Universe?. In: Börner, G., Gottlöber, S.(eds) Dahlem Workshop Report ES19 The Evolution of the Universe:Berlin 1995., pp. 51–78. Wiley, Chichester (1997)Google Scholar
  74. 74.
    Ellis, G.F.R., Buchert, T.: The Universe seen at different scales. Phys. Lett. A (Einstein Special Issue) 347, 38 (2005)ADSMathSciNetGoogle Scholar
  75. 75.
    Ellis, G.F.R., van Elst, H.: Cosmological Models (Cargèse Lectures 1998). In: Lachièze-Rey, M. (eds.) Proceedings of the NATO Advanced Study Institute on Theoretical and Observational Cosmology, Cargèse, France, August 17–29, 1998. Kluwer, Boston, NATO Sci. Ser. C 541, 1–116 (1999)Google Scholar
  76. 76.
    Ellis, G.F.R., Maartens, R.: The emergent universe: inflationary cosmology with no singularity. Class. Quant. Grav. 21, 223 (2004)MATHADSMathSciNetGoogle Scholar
  77. 77.
    Ellis, G.F.R., Murugan, J., Tsagas, C.G.: The emergent universe: an explicit construction. Class. Quant. Grav. 21, 233 (2004)MATHADSMathSciNetGoogle Scholar
  78. 78.
    Ellis, G.F.R., Stoeger, W.: The ‘fitting problem’ in cosmology. Class. Quant. Grav. 4, 1697 (1987)MATHADSMathSciNetGoogle Scholar
  79. 79.
    van Elst, H., Uggla, C., Lesame, W.M., Ellis, G.F.R., Maartens, R.: Integrability of irrotational silent cosmological models. Class. Quant. Grav. 14, 1151 (1997)MATHADSMathSciNetGoogle Scholar
  80. 80.
    Enqvist, K., Mattsson, T.: The effect of inhomogeneous expansion on the supernova observations. JCAP 0702, 019 (2007)ADSGoogle Scholar
  81. 81.
    Evans, A.K.D., Wehus, I.K., Grøn, Ø., Elganøy, Ø.: Geometrical constraints on Dark Energy. Astron. Astrophys. 430, 399 (2005)MATHADSGoogle Scholar
  82. 82.
    Felder, G.N., Kofman, L.: Nonlinear inflaton fragmentation after preheating. Phys. Rev. D 75, 043518 (2007)ADSGoogle Scholar
  83. 83.
    França, U.: Dark Energy, curvature, and cosmic coincidence. Phys. Lett. B 641, 351 (2006)ADSMathSciNetGoogle Scholar
  84. 84.
    Friedmann, A.: On the curvature of space. Gen. Rel. Grav. 31, 1991 (1999); translated by G.F.R. Ellis and H. van Elst from: Über die Krümmung des Raumes. Zeitschrift für Physik 10, 377 (1922)Google Scholar
  85. 85.
    Friedmann, A.: On the possibility of a world with constant negative curvature of space. Gen. Rel. Grav. 31, 2001 (1999)MATHADSMathSciNetGoogle Scholar
  86. 86.
    Friedmann, A.: Addendum Gen. Rel. Grav. 32, 1937 (2000); translated by G.F.R. Ellis and H. van Elst from: Über die Möglichkeit einer Welt mit konstanter negativer Krümmung des Raumes. Zeitschrift für Physik 21, 326 (1924)Google Scholar
  87. 87.
    Füzfa, A., Alimi, J.-M.: Toward a unified description of Dark Energy and Dark Matter from the AWE hypothesis. Phys. Rev. D 75, 123007 (2007)ADSGoogle Scholar
  88. 88.
    Futamase, T.: An approximation scheme for constructing inhomogeneous universes in general relativity. Mon. Not. Roy. Astron. Soc. 237, 187 (1989)ADSGoogle Scholar
  89. 89.
    Futamase, T.: Averaging of a locally inhomogeneous realistic universe. Phys. Rev. D 53, 681 (1996)ADSGoogle Scholar
  90. 90.
    Garfinkle, D.: Inhomogeneous spacetimes as a Dark Energy model. Class. Quant. Grav. 23, 4811 (2006)MATHADSMathSciNetGoogle Scholar
  91. 91.
    Giovanelli, R., Dale, D.A., Haynes, M.P., Hardy, E., Campusano, L.E.: No Hubble Bubble in the local Universe. Ap. J. 525, 25 (1999)ADSGoogle Scholar
  92. 92.
    Gorini, V., Kamenshchik, A., Moschella, U.: Can the Chaplygin gas be a plausible model for Dark Energy?. Phys. Rev. D 67, 063509 (2003)ADSGoogle Scholar
  93. 93.
    Górski, K.M.: On the pattern of perturbations of the Hubble flow. Astrophys. J. 332, L7 (1988)ADSGoogle Scholar
  94. 94.
    Hamilton, R.S.: Three-manifolds with positive Ricci curvature. J. Diff. Geom. 17, 255 (1982)MATHMathSciNetGoogle Scholar
  95. 95.
    Hamilton, R.S.: The formation of singularities in the Ricci flow. In: Surveys in Differential Geometry vol. 2, International Press, pp. 7–136 (1995)Google Scholar
  96. 96.
    Hellaby, C.: Volume matching in Tolman models. Gen. Rel. Grav. 20, 1203 (1988)ADSMathSciNetGoogle Scholar
  97. 97.
    Hellaby, C.: The mass of the cosmos. Mon. Not. Roy. Astron. Soc. 370, 239 (2006)ADSGoogle Scholar
  98. 98.
    Hikage, C., Schmalzing, J., Buchert, T., Suto, Y., Kayo, I., Taruya, A., Vogeley, M.S., Hoyle, F., Gott III, J.R., Brinkmann, J.: Minkowski Functionals of SDSS galaxies I: analysis of excursion sets. PASJ 55, 911 (2003)ADSGoogle Scholar
  99. 99.
    Hosoya, A., Buchert, T., Morita, M.: Information entropy in cosmology. Phys. Rev. Lett. 92, 141302 (2004)ADSMathSciNetGoogle Scholar
  100. 100.
    Hui, L., Bertschinger, E.: Local approximations to the gravitational collapse of cold matter. Astrophys. J. 471, 1 (1996)ADSGoogle Scholar
  101. 101.
    Ichikawa, K., Kawasaki, M., Sekiguchi, T., Takahashi, T.: Implications of Dark Energy parametrizations for the determination of the curvature of the universe. JCAP 0612, 005 (2006)ADSGoogle Scholar
  102. 102.
    Ishibashi, A., Wald, R.M.: Can the acceleration of our Universe be explained by the effects of inhomogeneities?. Class. Quant. Grav. 23, 235 (2006)MATHADSMathSciNetGoogle Scholar
  103. 103.
    Israel, W.: Non-stationary irreversible thermodynamics: a causal relativistic theory. Ann. Phys. 100, 310 (1976)ADSMathSciNetGoogle Scholar
  104. 104.
    Joyce, M., Labini, F.S., Gabrielli, A., Montuori, M., Pietronero, L.: Basic properties of galaxy clustering in the light of recent results from the Sloan Digital Sky Survey. Astron. Astrophys. 443, 11 (2005)ADSGoogle Scholar
  105. 105.
    Kantowski, R.: Lamé equation for the distance redshift in a partially filled beam Friedmann–Lemaî tre–Robertson–Walker cosmology. Phys. Rev. D 68, 123516 (2003)ADSGoogle Scholar
  106. 106.
    Kantowski, R., Thomas, R.C.: Distance-redshift in inhomogeneous Ω0  = 1 Friedmann-Lemaî tre–Robertson–Walker cosmology. Ap. J. 561, 591 (2001)ADSGoogle Scholar
  107. 107.
    Kantowski, R., Kao, J.K., Thomas, R.C.: Distance-redshift relations in inhomogeneous Friedmann–Lemaî tre–Robertson–Walker cosmology. Ap. J. 545, 549 (2000)ADSGoogle Scholar
  108. 108.
    Kasai, M.: Inhomogeneous cosmological models which are homogeneous and isotropic on average. Phys. Rev. D 47, 3214 (1993)ADSMathSciNetGoogle Scholar
  109. 109.
    Kasai, M.: Tetrad-based perturbative approach to inhomogeneous universes: a general relativistic version of the Zel’dovich approximation. Phys. Rev. D 52, 5605 (1995)ADSGoogle Scholar
  110. 110.
    Kasai, M.: Apparent acceleration through the large-scale inhomogeneities—post-Friedmannian effects of inhomogeneities on the luminosity distance. Prog. Theor. Phys. 117, 1067 (2007)MATHADSGoogle Scholar
  111. 111.
    Kerscher,M.: Statistical analysis of large-scale structure in theUniverse. In:Mecke, K.R., Stoyan ,D. (eds.) Statistical Physics and Spatial Statistics: Lecture Notes in Physics, vol. 554., p. 37, Springer, Berlin (2000)Google Scholar
  112. 112.
    Kerscher, M., Buchert, T., Futamase, T.: On the abundance of collapsed objects. Ap. J. 558, L79 (2001)ADSGoogle Scholar
  113. 113.
    Kerscher, M., Schmalzing, J., Buchert, T., Wagner, H.: Fluctuations in the IRAS 1.2 Jy catalogue. Astron. Astrophys. 333, 1 (1998)ADSGoogle Scholar
  114. 114.
    Kerscher, M., Mecke, K.R., Schmalzing, J., Beisbart, C., Buchert, T., Wagner, H.: Morphological fluctuations of large-scale structure: the PSCz survey. Astron. Astrophys. 373, 1 (2001)ADSGoogle Scholar
  115. 115.
    Kerscher, M., Schmalzing, J., Retzlaff, J., Borgani, S., Buchert, T., Gottlöber, S., Müller, V., Plionis, M., Wagner, H.: Minkowski Functionals of Abell/ACO clusters. Mon. Not. Roy. Astron. Soc. 284, 73 (1997)ADSGoogle Scholar
  116. 116.
    Kodama, H., Sasaki, M.: Cosmological perturbation theory. Prog. Theor. Phys. Suppl. 78, 1 (1984)ADSGoogle Scholar
  117. 117.
    Kolb, E.W., Matarrese, S., Notari, A., Riotto, A.: Effect of inhomogeneities on the expansion rate of the Universe. Phys. Rev. D 71, 023524 (2005)ADSGoogle Scholar
  118. 118.
    Kolb, E.W., Matarrese, S., Riotto, A.: Comments on backreaction and cosmic acceleration. arXiv:astro-ph/0511073 (2005)Google Scholar
  119. 119.
    Kolb, E.W., Matarrese, S., Riotto, A.: On cosmic acceleration without Dark Energy. New J. Phys. 8, 322 (2006)ADSGoogle Scholar
  120. 120.
    Krasiński, A.: Inhomogeneous cosmological models. Cambridge Univ. Press, (1997)Google Scholar
  121. 121.
    Lahav, O.: Observational tests of FLRW world models. Class. Quant. Grav. 19, 3517 (2002)MATHADSGoogle Scholar
  122. 122.
    Larena, J., Alimi, J.-M., Buchert, T., Kunz, M.: Explaining SN1a observations by relativistic kinematical backreaction. (in preparation) (2007)Google Scholar
  123. 123.
    Larena, J., Buchert, T., Alimi, J.-M.: Morphed Inflation. (in preparation) (2007)Google Scholar
  124. 124.
    Lehoucq, R., Uzan, J.-P., Luminet, J.-P.: Limits of crystallographic methods for detecting space topology. Astron. Astrophys. 363, 1 (2000)ADSGoogle Scholar
  125. 125.
    Leith, B.M., Ng, S.C.C., Wiltshire, D.L.: Gravitational energy as dark energy: concordance of cosmological tests. Phys. Rev. D 76, 083011 (2007)ADSGoogle Scholar
  126. 126.
    Li, N., Schwarz, D.J.: On the onset of cosmological backreaction. arXiv:gr-qc/0702043 (2007)Google Scholar
  127. 127.
    Liddle, A.R., Scherrer, R.J.: Classification of scalar field potentials with cosmological scaling solutions. Phys. Rev. D 59, 023509 (1999)ADSGoogle Scholar
  128. 128.
    Linde, A.D., Linde, D.A., Mezhlumian, A.: Non-perturbative amplification of inhomogeneities in a self-reproducing Universe. Phys. Rev. D 54, 2504 (1996)ADSGoogle Scholar
  129. 129.
    Lu, T.H.C., Hellaby, C.: Obtaining the spacetime metric from cosmological observations. Class. Quant. Grav. 24, 4107 (2007)MATHADSMathSciNetGoogle Scholar
  130. 130.
    Maartens, R.: Brane World Gravity. Living Rev. Rel. 7, 7 (2004)Google Scholar
  131. 131.
    Maartens, R., Ellis, G.F.R., Stoeger, W.R.: Improved limits on anisotropy and inhomogeneity from the cosmic background radiation. Phys. Rev. D. 51, 1525 and 5942 (1995)Google Scholar
  132. 132.
    Maartens, R., Ellis, G.F.R., Stoeger, W.R.: Anisotropy and inhomogeneity of the Universe from ΔT / T. Astron. Astrophys. 309, L7 (1996)ADSGoogle Scholar
  133. 133.
    Marra, V., Kolb, E.W., Matarrese, S., Riotto, A.: On cosmological observables in a swiss-cheese universe. arXiv:astro-ph/0708.3622 (2007)Google Scholar
  134. 134.
    Martineau, P., Brandenberger, R.H.: Effects of gravitational backreaction on cosmological perturbations. Phys. Rev. D 72, 023507 (2005)ADSGoogle Scholar
  135. 135.
    Matarrese, S., Terranova, D.: Post-Newtonian cosmological dynamics in Lagrangian coordinates. Mon. Not. Roy. Astron. Soc. 283, 400 (1996)ADSGoogle Scholar
  136. 136.
    Mattsson, T., Ronkainen, M.: Exploiting scale dependence in cosmological averaging. arXiv:astro-ph/0708.3673 (2007)Google Scholar
  137. 137.
    Mecke, K.R., Buchert, T., Wagner, H.: Robust morphological measures for large-scale structure in the Universe. Astron. Astrophys. 288, 697 (1994)ADSGoogle Scholar
  138. 138.
    Mena, F.C., Tod, P.: Lanczos potentials and a definition of gravitational entropy for perturbed FLRW space-times. arXiv:gr-qc/0702057 (2007)Google Scholar
  139. 139.
    Mersini-Houghton, L., Wang, Y., Mukherjee, P., Kafexhiu, E.: Nontrivial geometries: bounds on the curvature of the Universe. arXiv:0705.0332 [astro-ph] (2007)Google Scholar
  140. 140.
    Mota, B., Gomero, G.I., Rebouças, M.J., Tavakol, R.: What do very nearly flat detectable cosmic topologies look like?. Class. Quant. Grav. 21, 3361 (2004)MATHADSGoogle Scholar
  141. 141.
    Mukhanov, V.F.: Physical foundations of cosmology. Cambridge University Press, (2005)Google Scholar
  142. 142.
    Mukhanov, V.F., Abramo, L.R.W., Brandenberger, R.H.: Backreaction problem for cosmological perturbations. Phys. Rev. Lett. 78(78), 1624 (1997)ADSGoogle Scholar
  143. 143.
    Mukhanov, V.F., Feldman, H.A., Brandenberger, R.H.: Theory of cosmological perturbations. Phys. Rep. 215, 203 (1992)ADSMathSciNetGoogle Scholar
  144. 144.
    Mustapha, N., Hellaby, C., Ellis, G.F.R.: Large-scale inhomogeneity versus source evolution—can we distinguish them observationally?. Mon. Not. Roy. Astron. Soc. 292, 817 (1997)ADSGoogle Scholar
  145. 145.
    Nambu, Y., Tanimoto, M.: Accelerating Universe via spatial averaging. arXiv:gr-qc/0507057 (2005)Google Scholar
  146. 146.
    Padmanabhan, T.: Dark Energy: the cosmological challenge of the millennium. Curr. Sci. 88, 1057 (2005)ADSGoogle Scholar
  147. 147.
    Padmanabhan, T.: this volume, arXiv:0705.2533 [gr-qc] (2007)Google Scholar
  148. 148.
    Padmanabhan, T., Roy Choudhury, T.: Can the clustered Dark Matter and the smooth Dark Energy arise from the same scalar field?. Phys. Rev. D. 66(1), 081301 (2002)ADSGoogle Scholar
  149. 149.
    Palle, D.: On the large-scale inhomogeneous Universe and the cosmological constant. Nuovo Cim. 117, 687 (2002)ADSGoogle Scholar
  150. 150.
    Paranjape, A.: A covariant road to spatial averaging in cosmology: scalar corrections to the cosmological equations. arXiv:0705:2380 [gr-qc] (2007)Google Scholar
  151. 151.
    Paranjape, A., Singh, T.P.: The possibility of cosmic acceleration via spatial averaging in Lemaî tre Tolman Bondi models. Class. Quant. Grav. 23, 6955 (2006)MATHADSMathSciNetGoogle Scholar
  152. 152.
    Paranjape, A., Singh, T.P.: Explicit cosmological coarse graining via spatial averaging. Gen. Rel. Grav. arXiv:astro-ph/0609481 (2006, in press)Google Scholar
  153. 153.
    Paranjape, A., Singh, T.P.: The spatial averaging limit of covariant Macroscopic Gravity—scalar corrections to the cosmological equations. Phys. Rev. D 76, 044006 (2007)ADSGoogle Scholar
  154. 154.
    Parry, M.: A rule of thumb for cosmological backreaction. JCAP 0606, 016 (2006)ADSGoogle Scholar
  155. 155.
    Peebles, P.J.E., Ratra, B.: The cosmological constant and Dark Energy. Rev. Mod. Phys. 75, 559 (2003)ADSMathSciNetGoogle Scholar
  156. 156.
    Penrose, R.: The Emperor’s new Mind: concerning Computers, Minds, and the Laws of Physics. Oxford Univ. Press, (1989)Google Scholar
  157. 157.
    Penrose, R.: The Road to Reality: a complete Guide to the Laws of the Universe. Jonathan Cape, London (2004)Google Scholar
  158. 158.
    Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. arXiv:math/ 0211159 (2002)Google Scholar
  159. 159.
    Perelman, G.: Ricci flow with surgery on three-manifolds. arXiv:math/0303109 (2003)Google Scholar
  160. 160.
    Petersen, P.: Riemannian Geometry. Springer Verlag GTM 171 (1997)Google Scholar
  161. 161.
    Prigogine, I.: Non Equilibrium Statistical Mechanics. Interscience Pub., New York (1962)MATHGoogle Scholar
  162. 162.
    Räsänen, S.: Dark Energy from backreaction. JCAP 0402, 003 (2004)Google Scholar
  163. 163.
    Räsänen, S.: Backreaction in the Lemaî tre Tolman Bondi model. JCAP 0411, 010 (2004)Google Scholar
  164. 164.
    Räsänen, S.: Constraints on backreaction in dust universes. Class. Quant. Grav. 23, 1823 (2006)MATHGoogle Scholar
  165. 165.
    Räsänen, S.: Accelerated expansion from structure formation. JCAP 0611, 003 (2006)Google Scholar
  166. 166.
    Räsänen, S.: Comment on ‘Nontrivial geometries: bounds on the curvature of the Universe’. arXiv:0705.2992 [astro-ph] (2007)Google Scholar
  167. 167.
    Raychaudhuri, A.: Relativistic cosmology. Phys. Rev. 98, 1123 (1955)MATHADSMathSciNetGoogle Scholar
  168. 168.
    Raychaudhuri, A.: Gen. Rel. Grav. 32, 749 (2000)MATHADSMathSciNetGoogle Scholar
  169. 169.
    Regös, E., Szalay, A.S.: Multipole expansion of the large-scale velocity field—using the tensor window function. Astrophys. J. 345, 627 (1989)ADSGoogle Scholar
  170. 170.
    Reiris, M.: Large scale (CMC) evolution of cosmological solutions of the Einstein equations with a priori bounded space–time curvature. arXiv: gr-qc/0705.3070 (2007)Google Scholar
  171. 171.
    Reiris, M.: Large scale properties of perturbed K =  − 1 Robertson–Walker cosmologies. arXiv: gr-qc/0709.0770 (2007)Google Scholar
  172. 172.
    Ruiz-Lapuente, P.: Dark Energy, gravitation and supernovae. Class. Quant. Grav. 24, R91 (2007)MATHMathSciNetGoogle Scholar
  173. 173.
    Russ, H., Soffel, M.H., Kasai, M., Börner, G.: Age of the universe: influence of the inhomogeneities on the global expansion factor. Phys. Rev. D 56, 2044 (1997)ADSGoogle Scholar
  174. 174.
    Sahni, V., Saini, T.D., Starobinskii, A.A., Alam, U.: Statefinder—a new geometrical diagnostic of Dark Energy. JETP Lett. 77, 201 (2003)ADSGoogle Scholar
  175. 175.
    Sahni, V., Sathyaprakash, B.S., Shandarin, S.F.: Shapefinders: a new shape diagnostic for large-scale structure. Astrophys. J. 495, L5 (1998)ADSGoogle Scholar
  176. 176.
    Sahni, V., Starobinskii, A.A.: The case for a positive cosmological Λ-term. Int. J. Mod. Phys. D 9, 373 (2000)ADSGoogle Scholar
  177. 177.
    Schimd, C., Tereno, I.: Scalar-field quintessence by cosmic shear: CFHT data analysis and forecasts for DUNE. J. Phys. A 40, 7105 (2007)ADSGoogle Scholar
  178. 178.
    Schmalzing, J., Buchert, T.: Beyond Genus Statistics: a unifying approach to the morphology of cosmic structure. Astrophys. J. 482, L1 (1997)ADSGoogle Scholar
  179. 179.
    Schmalzing, J., Gorski, K.M.: Minkowski Functionals used in the morphological analysis of Cosmic Microwave Background anisotropy maps. Mon. Not. Roy. Astron. Soc. 297, 355 (1998)ADSGoogle Scholar
  180. 180.
    Schmalzing, J., Buchert, T., Melott, A.L., Sahni, V., Sathyaprakash, B.S., Shandarin, S.F.: Disentangling the Cosmic Web. I. morphology of isodensity contours. Astrophys. J. 526, 568 (1999)ADSGoogle Scholar
  181. 181.
    Schwarz, D.J.: Accelerated expansion without Dark Energy. In: Brax, P., Martin, J., Uzan, J.-P. (eds.) On the Nature of Dark Energy: 18th IAP Astrophys. Colloq., pp. 331–334, Frontier Paris 2002; arXiv:astro-ph/0209584 (2002)Google Scholar
  182. 182.
    Shirokov, M.F., Fisher, I.Z.: Isotropic space with discrete gravitational-field sources. On the theory of a nonhomogeneous isotropic Universe. Sov. Astron. 6, 699 (1963)ADSGoogle Scholar
  183. 183.
    Smarr, L., York, J.W. Jr.: Kinematical conditions in the construction of spacetime. Phys. Rev. D 17, 2529 (1978)ADSMathSciNetGoogle Scholar
  184. 184.
    Sopuerta, C.F.: New study of silent universes. Phys. Rev. D 55, 5936 (1997)ADSGoogle Scholar
  185. 185.
    Spergel, D.N. et al.: Wilkinson Microwave Anisotropy Probe (WMAP) three year results: implications for cosmology. Astrophys. J. Suppl. 170, 377 (2007)ADSGoogle Scholar
  186. 186.
    Stewart, J.M., Walker, M.: Perturbations of space-times in general relativity. Proc. Roy. Soc. Lond. A 341, 49 (1974)ADSMathSciNetCrossRefGoogle Scholar
  187. 187.
    Stewart, J.M.: Perturbations of Friedmann–Robertson–Walker cosmological models. Class. Quant. Grav. 7, 1169 (1990)MATHADSGoogle Scholar
  188. 188.
    Sugiura, N., Nakao, K., Ida, D., Sakai, N., Ishihara, H.: How do nonlinear voids affect light propagation?. Prog. Theor. Phys. 103, 73 (2000)ADSGoogle Scholar
  189. 189.
    Tanimoto, M.: Criticality and averaging in cosmology. Prog. Theor. Phys. 102, 1001 (1999)ADSGoogle Scholar
  190. 190.
    Tomita, K.: Bulk flows and Cosmic Microwave Background dipole anisotropy in cosmological void models. Astrophys. J. 529, 26 (2000)ADSGoogle Scholar
  191. 191.
    Tomita, K.: Distances and lensing in cosmological void models. Astrophys. J. 529, 38 (2000)ADSGoogle Scholar
  192. 192.
    Tomita, K.: A local void and the accelerating Universe. Mon. Not. Roy. Astro. Soc. 326, 287 (2001)ADSGoogle Scholar
  193. 193.
    Uggla, C., van Elst, H., Wainwright, J., Ellis, G.F.R.: Past attractor in inhomogeneous cosmology. Phys. Rev. D 68, 103502 (2003)ADSGoogle Scholar
  194. 194.
    Uzan, J.-P.: The acceleration of the Universe and the physics behind it. Gen. Rel. Grav. 39, 307 (2007)MATHMathSciNetGoogle Scholar
  195. 195.
    Uzan, J.-P., Lehoucq, R., Luminet, J.-P.: A new crystallographic method for detecting space topology. Astron. Astrophys. 351, 766 (1999)ADSGoogle Scholar
  196. 196.
    Vanden Bergh, N., Wylleman, L.: Silent universes with a cosmological constant. Class. Quant. Grav. 21, 2291 (2004)ADSMathSciNetGoogle Scholar
  197. 197.
    Vanderveld, R.A., Flanagan, E.E., Wasserman, I.: Systematic corrections to the measured cosmological constant as a result of local inhomogeneity. Phys. Rev. D 76, 083504 (2007)ADSGoogle Scholar
  198. 198.
    Wainwright, J., Ellis, G.F.R.: Dynamical Systems in Cosmology. Cambridge University Press, Cambridge (1997)Google Scholar
  199. 199.
    Wiltshire, D.L.: Cosmic clocks, cosmic variance and cosmic averages. New J. Phys. 9, 377 (2007)ADSGoogle Scholar
  200. 200.
    Wiltshire, D.L.: Exact solution to the averaging problem in cosmology. arXiv:gr-qc/0709.0732 (2007)Google Scholar
  201. 201.
    Zalaletdinov, R.M.: Averaging problem in general relativity, macroscopic gravity and using Einstein’s equations in cosmology. Bull. Astron. Soc. India 25, 401 (1997)ADSGoogle Scholar
  202. 202.
    Zehavi, I., Riess, A.G., Kirshner, R.P., Dekel, A.: A local Hubble Bubble from Type Ia supernovae?. Astrophys. J. 503, 483 (1998)ADSGoogle Scholar
  203. 203.
    Zel’dovich, Ya.B.: Fragmentation of a homogeneous medium under the action of gravitation. Astrophysics 6, 164 (1970)ADSGoogle Scholar
  204. 204.
    Zel’dovich, Ya.B.: Gravitational instability: an approximate theory for large density perturbations. Astron. Astrophys. 5, 84 (1970)ADSGoogle Scholar
  205. 205.
    Zimdahl, W., Schwarz, D.J., Balakin, A.B., Pavón, D.: Cosmic antifriction and accelerated expansion. Phys. Rev. D 64, 063501 (2001)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Université Lyon 1, Centre de Recherche Astrophysique de Lyon, CNRS UMR 5574Saint-Genis-LavalFrance
  2. 2.Laboratoire de l‘Univers et ses Théories LUTh ,CNRS UMR 8102, Observatoire de Paris and Université Paris 7MeudonFrance

Personalised recommendations